|
|
|
from datasets import load_dataset, Audio |
|
from transformers import ( |
|
WhisperProcessor, |
|
WhisperForConditionalGeneration, |
|
Seq2SeqTrainingArguments, |
|
Seq2SeqTrainer |
|
) |
|
import torch |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Union |
|
from functools import partial |
|
import evaluate |
|
|
|
|
|
dataset = load_dataset("") |
|
dataset |
|
|
|
|
|
split_dataset = dataset['train'].train_test_split(test_size=0.2) |
|
split_dataset |
|
|
|
|
|
split_dataset['train'] = split_dataset['train'].select_columns(["audio", "sentence"]) |
|
split_dataset['train'] |
|
|
|
|
|
processor = WhisperProcessor.from_pretrained( |
|
"openai/whisper-small", |
|
language="swahili", |
|
task="transcribe" |
|
) |
|
|
|
|
|
print('BEFORE>>> ', split_dataset['train'].features['audio']) |
|
sampling_rate = processor.feature_extractor.sampling_rate |
|
split_dataset['train'] = split_dataset['train'].cast_column( |
|
"audio", |
|
Audio(sampling_rate=sampling_rate) |
|
) |
|
print('AFTER>>> ', split_dataset['train'].features['audio']) |
|
|
|
|
|
print('BEFORE>>> ', split_dataset['test'].features['audio']) |
|
split_dataset['test'] = split_dataset['test'].cast_column( |
|
"audio", |
|
Audio(sampling_rate=sampling_rate) |
|
) |
|
print('AFTER>>> ', split_dataset['test'].features['audio']) |
|
|
|
def prepare_dataset(example): |
|
"""Preprocess audio and text data for Whisper model training""" |
|
audio = example["audio"] |
|
|
|
|
|
example = processor( |
|
audio=audio["array"], |
|
sampling_rate=audio["sampling_rate"], |
|
text=example["sentence"], |
|
) |
|
|
|
|
|
example["input_length"] = len(audio["array"]) / audio["sampling_rate"] |
|
|
|
return example |
|
|
|
|
|
split_dataset['train'] = split_dataset['train'].map( |
|
prepare_dataset, |
|
remove_columns=split_dataset['train'].column_names, |
|
num_proc=4 |
|
) |
|
|
|
split_dataset['test'] = split_dataset['test'].map( |
|
prepare_dataset, |
|
remove_columns=split_dataset['test'].column_names, |
|
num_proc=1 |
|
) |
|
|
|
|
|
max_input_length = 30.0 |
|
def is_audio_in_length_range(length): |
|
return length < max_input_length |
|
|
|
split_dataset['train'] = split_dataset['train'].filter( |
|
is_audio_in_length_range, |
|
input_columns=["input_length"], |
|
) |
|
|
|
@dataclass |
|
class DataCollatorSpeechSeq2SeqWithPadding: |
|
"""Custom data collator for Whisper speech-to-sequence tasks with padding""" |
|
processor: Any |
|
|
|
def __call__( |
|
self, features: List[Dict[str, Union[List[int], torch.Tensor]]] |
|
) -> Dict[str, torch.Tensor]: |
|
|
|
|
|
input_features = [ |
|
{"input_features": feature["input_features"][0]} for feature in features |
|
] |
|
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") |
|
|
|
|
|
label_features = [{"input_ids": feature["labels"]} for feature in features] |
|
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") |
|
|
|
|
|
labels = labels_batch["input_ids"].masked_fill( |
|
labels_batch.attention_mask.ne(1), -100 |
|
) |
|
|
|
|
|
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): |
|
labels = labels[:, 1:] |
|
|
|
batch["labels"] = labels |
|
|
|
return batch |
|
|
|
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) |
|
|
|
|
|
metric = evaluate.load("wer") |
|
|
|
|
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer |
|
normalizer = BasicTextNormalizer() |
|
|
|
def compute_metrics(pred): |
|
"""Compute WER (Word Error Rate) metrics for evaluation""" |
|
pred_ids = pred.predictions |
|
label_ids = pred.label_ids |
|
|
|
|
|
label_ids[label_ids == -100] = processor.tokenizer.pad_token_id |
|
|
|
|
|
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True) |
|
label_str = processor.batch_decode(label_ids, skip_special_tokens=True) |
|
|
|
|
|
wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str) |
|
|
|
|
|
pred_str_norm = [normalizer(pred) for pred in pred_str] |
|
label_str_norm = [normalizer(label) for label in label_str] |
|
|
|
|
|
pred_str_norm = [ |
|
pred_str_norm[i] for i in range(len(pred_str_norm)) if len(label_str_norm[i]) > 0 |
|
] |
|
label_str_norm = [ |
|
label_str_norm[i] for i in range(len(label_str_norm)) if len(label_str_norm[i]) > 0 |
|
] |
|
|
|
wer = 100 * metric.compute(predictions=pred_str_norm, references=label_str_norm) |
|
|
|
return {"wer_ortho": wer_ortho, "wer": wer} |
|
|
|
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") |
|
|
|
|
|
model.config.use_cache = False |
|
|
|
|
|
model.generate = partial( |
|
model.generate, |
|
language="swahili", |
|
task="transcribe", |
|
use_cache=True |
|
) |
|
|
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="./model", |
|
per_device_train_batch_size=16, |
|
gradient_accumulation_steps=1, |
|
learning_rate=1e-6, |
|
lr_scheduler_type="constant_with_warmup", |
|
warmup_steps=50, |
|
max_steps=10000, |
|
gradient_checkpointing=True, |
|
fp16=True, |
|
fp16_full_eval=True, |
|
evaluation_strategy="steps", |
|
per_device_eval_batch_size=16, |
|
predict_with_generate=True, |
|
generation_max_length=225, |
|
save_steps=500, |
|
eval_steps=500, |
|
logging_steps=100, |
|
report_to=["tensorboard", "wandb"], |
|
load_best_model_at_end=True, |
|
metric_for_best_model="wer", |
|
greater_is_better=False, |
|
push_to_hub=True, |
|
save_total_limit=3, |
|
) |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
args=training_args, |
|
model=model, |
|
train_dataset=split_dataset['train'], |
|
eval_dataset=split_dataset['test'], |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics, |
|
tokenizer=processor, |
|
) |
|
|
|
|
|
trainer.train() |