Model Card: Chinese Calligraphy Character Classifier (ResNet50-based)
Model Details
- Architecture: ResNet50 pretrained on ImageNet + custom classifier head
- Classes: 1200 Chinese calligraphy characters
- Input: 224x224 RGB images (grayscale converted to RGB)
- Framework: PyTorch
Intended Use
- Handwritten Chinese calligraphy OCR and recognition
- For research, cultural preservation, and academic purposes
Dataset
- EthicalSplit5508v3
- Train: 60,168 images | Val: 1,200 | Test: 1,200
- 1200 classes with fixed splits
Training
- Batch size: 64, Learning rate: 3e-5 with OneCycleLR scheduler
- Epochs: up to 50, early stopping enabled
- Optimizer: Adam with weight decay 1e-4
- Loss: Cross-entropy with label smoothing (0.1)
Performance
- Validation loss reduced from ~5.7 to ~1.06
- Test accuracy: ~88%+
- Model size: ~25M parameters
Limitations
- May underperform on unseen handwriting styles or poor image quality
- Uses RGB input; grayscale-specific training not applied
- Dataset biases may affect generalization
Ethical Considerations
- Dataset complies with ethical usage; no PII involved
- Intended for cultural and academic use only
Usage Example
model = ChineseClassifier(embed_dim=512, num_classes=1200, pretrainedEncoder=True, unfreezeEncoder=True)
checkpoint = torch.load("best_checkpoint.pth", map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
transform = CalligraphyCharacterDataset.defaultTransform()
img = Image.open("path_to_image.jpg").convert("RGB")
input_tensor = transform(img).unsqueeze(0).to(device)
outputs = model(input_tensor)
pred_idx = torch.argmax(outputs, dim=1).item()
pred_char = idx2char[pred_idx]
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for JJJHHHH/CCR_EthicalSplit_Finetune
Base model
microsoft/resnet-50