vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC
Browse files- README.md +136 -0
- all_results.json +16 -0
- config.json +40 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- test_results.json +11 -0
- train_results.json +8 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google/vit-base-patch16-224-in21k
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
model-index:
|
15 |
+
- name: vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Image Classification
|
19 |
+
type: image-classification
|
20 |
+
dataset:
|
21 |
+
name: imagefolder
|
22 |
+
type: imagefolder
|
23 |
+
config: default
|
24 |
+
split: test
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.9283333333333333
|
30 |
+
- name: Precision
|
31 |
+
type: precision
|
32 |
+
value: 0.9298268970881306
|
33 |
+
- name: Recall
|
34 |
+
type: recall
|
35 |
+
value: 0.9283333333333333
|
36 |
+
- name: F1
|
37 |
+
type: f1
|
38 |
+
value: 0.9281531442596677
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.3821
|
49 |
+
- Accuracy: 0.9283
|
50 |
+
- Precision: 0.9298
|
51 |
+
- Recall: 0.9283
|
52 |
+
- F1: 0.9282
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 0.0002
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 15
|
78 |
+
- mixed_precision_training: Native AMP
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 0.3259 | 0.3333 | 100 | 0.6052 | 0.8142 | 0.8678 | 0.8142 | 0.8113 |
|
85 |
+
| 0.1852 | 0.6667 | 200 | 0.4605 | 0.8525 | 0.8799 | 0.8525 | 0.8505 |
|
86 |
+
| 0.1342 | 1.0 | 300 | 0.5787 | 0.8583 | 0.8939 | 0.8583 | 0.8592 |
|
87 |
+
| 0.0984 | 1.3333 | 400 | 0.4582 | 0.8875 | 0.8938 | 0.8875 | 0.8863 |
|
88 |
+
| 0.0555 | 1.6667 | 500 | 0.3914 | 0.8825 | 0.8955 | 0.8825 | 0.8844 |
|
89 |
+
| 0.2228 | 2.0 | 600 | 0.5982 | 0.865 | 0.8807 | 0.865 | 0.8668 |
|
90 |
+
| 0.016 | 2.3333 | 700 | 0.5747 | 0.8708 | 0.8929 | 0.8708 | 0.8729 |
|
91 |
+
| 0.2215 | 2.6667 | 800 | 0.6513 | 0.8575 | 0.8777 | 0.8575 | 0.8564 |
|
92 |
+
| 0.0118 | 3.0 | 900 | 0.8234 | 0.8492 | 0.8687 | 0.8492 | 0.8498 |
|
93 |
+
| 0.0028 | 3.3333 | 1000 | 0.6503 | 0.88 | 0.8949 | 0.88 | 0.8804 |
|
94 |
+
| 0.0035 | 3.6667 | 1100 | 0.4011 | 0.9133 | 0.9207 | 0.9133 | 0.9145 |
|
95 |
+
| 0.0742 | 4.0 | 1200 | 0.5671 | 0.8833 | 0.9069 | 0.8833 | 0.8833 |
|
96 |
+
| 0.0074 | 4.3333 | 1300 | 0.6269 | 0.8742 | 0.8902 | 0.8742 | 0.8711 |
|
97 |
+
| 0.0043 | 4.6667 | 1400 | 0.6497 | 0.8792 | 0.8998 | 0.8792 | 0.8800 |
|
98 |
+
| 0.133 | 5.0 | 1500 | 0.7292 | 0.8733 | 0.9075 | 0.8733 | 0.8738 |
|
99 |
+
| 0.0012 | 5.3333 | 1600 | 0.7823 | 0.8633 | 0.8799 | 0.8633 | 0.8637 |
|
100 |
+
| 0.0009 | 5.6667 | 1700 | 0.4115 | 0.915 | 0.9186 | 0.915 | 0.9156 |
|
101 |
+
| 0.0011 | 6.0 | 1800 | 0.8521 | 0.85 | 0.8619 | 0.85 | 0.8493 |
|
102 |
+
| 0.001 | 6.3333 | 1900 | 0.4895 | 0.9108 | 0.9263 | 0.9108 | 0.9126 |
|
103 |
+
| 0.0219 | 6.6667 | 2000 | 0.3821 | 0.9283 | 0.9298 | 0.9283 | 0.9282 |
|
104 |
+
| 0.0008 | 7.0 | 2100 | 0.7710 | 0.8683 | 0.8868 | 0.8683 | 0.8666 |
|
105 |
+
| 0.0007 | 7.3333 | 2200 | 0.5704 | 0.9108 | 0.9179 | 0.9108 | 0.9073 |
|
106 |
+
| 0.0014 | 7.6667 | 2300 | 0.6604 | 0.8925 | 0.8981 | 0.8925 | 0.8902 |
|
107 |
+
| 0.0005 | 8.0 | 2400 | 0.5364 | 0.9075 | 0.9095 | 0.9075 | 0.9061 |
|
108 |
+
| 0.0005 | 8.3333 | 2500 | 0.5356 | 0.9075 | 0.9093 | 0.9075 | 0.9062 |
|
109 |
+
| 0.0004 | 8.6667 | 2600 | 0.5364 | 0.9067 | 0.9082 | 0.9067 | 0.9053 |
|
110 |
+
| 0.0004 | 9.0 | 2700 | 0.7982 | 0.8692 | 0.8722 | 0.8692 | 0.8636 |
|
111 |
+
| 0.0004 | 9.3333 | 2800 | 0.7586 | 0.875 | 0.8774 | 0.875 | 0.8706 |
|
112 |
+
| 0.0004 | 9.6667 | 2900 | 0.7252 | 0.8808 | 0.8837 | 0.8808 | 0.8774 |
|
113 |
+
| 0.0003 | 10.0 | 3000 | 0.6126 | 0.8992 | 0.9037 | 0.8992 | 0.8995 |
|
114 |
+
| 0.0003 | 10.3333 | 3100 | 0.6417 | 0.8917 | 0.8889 | 0.8917 | 0.8899 |
|
115 |
+
| 0.0003 | 10.6667 | 3200 | 0.6489 | 0.8925 | 0.8901 | 0.8925 | 0.8909 |
|
116 |
+
| 0.0003 | 11.0 | 3300 | 0.6508 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
|
117 |
+
| 0.0003 | 11.3333 | 3400 | 0.6529 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
|
118 |
+
| 0.0003 | 11.6667 | 3500 | 0.6544 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
|
119 |
+
| 0.0003 | 12.0 | 3600 | 0.6561 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
|
120 |
+
| 0.0003 | 12.3333 | 3700 | 0.6577 | 0.8925 | 0.8899 | 0.8925 | 0.8907 |
|
121 |
+
| 0.0002 | 12.6667 | 3800 | 0.6592 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
122 |
+
| 0.0002 | 13.0 | 3900 | 0.6601 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
123 |
+
| 0.0002 | 13.3333 | 4000 | 0.6613 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
124 |
+
| 0.0002 | 13.6667 | 4100 | 0.6622 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
125 |
+
| 0.0002 | 14.0 | 4200 | 0.6629 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
126 |
+
| 0.0002 | 14.3333 | 4300 | 0.6635 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
127 |
+
| 0.0002 | 14.6667 | 4400 | 0.6638 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
128 |
+
| 0.0002 | 15.0 | 4500 | 0.6640 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
|
129 |
+
|
130 |
+
|
131 |
+
### Framework versions
|
132 |
+
|
133 |
+
- Transformers 4.48.2
|
134 |
+
- Pytorch 2.6.0+cu126
|
135 |
+
- Datasets 3.1.0
|
136 |
+
- Tokenizers 0.21.0
|
all_results.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 15.0,
|
3 |
+
"eval_accuracy": 0.9283333333333333,
|
4 |
+
"eval_f1": 0.9281531442596677,
|
5 |
+
"eval_loss": 0.3821205496788025,
|
6 |
+
"eval_precision": 0.9298268970881306,
|
7 |
+
"eval_recall": 0.9283333333333333,
|
8 |
+
"eval_runtime": 8.7628,
|
9 |
+
"eval_samples_per_second": 136.942,
|
10 |
+
"eval_steps_per_second": 17.118,
|
11 |
+
"total_flos": 5.57962327867392e+18,
|
12 |
+
"train_loss": 0.04276203705535995,
|
13 |
+
"train_runtime": 1145.3749,
|
14 |
+
"train_samples_per_second": 62.862,
|
15 |
+
"train_steps_per_second": 3.929
|
16 |
+
}
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/vit-base-patch16-224-in21k",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "SEC-Subtype_IVa",
|
13 |
+
"1": "SEC-Subtype_IVa2",
|
14 |
+
"2": "SEC-Subtype_IVc",
|
15 |
+
"3": "SEC-Subtype_IVd",
|
16 |
+
"4": "SEC-Subtype_Ia",
|
17 |
+
"5": "SEC-Subtype_Va"
|
18 |
+
},
|
19 |
+
"image_size": 224,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"label2id": {
|
23 |
+
"SEC-Subtype_IVa": "0",
|
24 |
+
"SEC-Subtype_IVa2": "1",
|
25 |
+
"SEC-Subtype_IVc": "2",
|
26 |
+
"SEC-Subtype_IVd": "3",
|
27 |
+
"SEC-Subtype_Ia": "4",
|
28 |
+
"SEC-Subtype_Va": "5"
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-12,
|
31 |
+
"model_type": "vit",
|
32 |
+
"num_attention_heads": 12,
|
33 |
+
"num_channels": 3,
|
34 |
+
"num_hidden_layers": 12,
|
35 |
+
"patch_size": 16,
|
36 |
+
"problem_type": "single_label_classification",
|
37 |
+
"qkv_bias": true,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.48.2"
|
40 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4575fdf621161ae0845b3ce5176c272ff56e70884c404068ced26ea6621359cf
|
3 |
+
size 343236280
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "ViTFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 224,
|
21 |
+
"width": 224
|
22 |
+
}
|
23 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 15.0,
|
3 |
+
"eval_accuracy": 0.9283333333333333,
|
4 |
+
"eval_f1": 0.9281531442596677,
|
5 |
+
"eval_loss": 0.3821205496788025,
|
6 |
+
"eval_precision": 0.9298268970881306,
|
7 |
+
"eval_recall": 0.9283333333333333,
|
8 |
+
"eval_runtime": 8.7628,
|
9 |
+
"eval_samples_per_second": 136.942,
|
10 |
+
"eval_steps_per_second": 17.118
|
11 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 15.0,
|
3 |
+
"total_flos": 5.57962327867392e+18,
|
4 |
+
"train_loss": 0.04276203705535995,
|
5 |
+
"train_runtime": 1145.3749,
|
6 |
+
"train_samples_per_second": 62.862,
|
7 |
+
"train_steps_per_second": 3.929
|
8 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c334981a40244de0f75c4b82d5c697c07563dd9751dd410067392aac8b2f540
|
3 |
+
size 5432
|