vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3821
- Accuracy: 0.9283
- Precision: 0.9298
- Recall: 0.9283
- F1: 0.9282
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3259 | 0.3333 | 100 | 0.6052 | 0.8142 | 0.8678 | 0.8142 | 0.8113 |
0.1852 | 0.6667 | 200 | 0.4605 | 0.8525 | 0.8799 | 0.8525 | 0.8505 |
0.1342 | 1.0 | 300 | 0.5787 | 0.8583 | 0.8939 | 0.8583 | 0.8592 |
0.0984 | 1.3333 | 400 | 0.4582 | 0.8875 | 0.8938 | 0.8875 | 0.8863 |
0.0555 | 1.6667 | 500 | 0.3914 | 0.8825 | 0.8955 | 0.8825 | 0.8844 |
0.2228 | 2.0 | 600 | 0.5982 | 0.865 | 0.8807 | 0.865 | 0.8668 |
0.016 | 2.3333 | 700 | 0.5747 | 0.8708 | 0.8929 | 0.8708 | 0.8729 |
0.2215 | 2.6667 | 800 | 0.6513 | 0.8575 | 0.8777 | 0.8575 | 0.8564 |
0.0118 | 3.0 | 900 | 0.8234 | 0.8492 | 0.8687 | 0.8492 | 0.8498 |
0.0028 | 3.3333 | 1000 | 0.6503 | 0.88 | 0.8949 | 0.88 | 0.8804 |
0.0035 | 3.6667 | 1100 | 0.4011 | 0.9133 | 0.9207 | 0.9133 | 0.9145 |
0.0742 | 4.0 | 1200 | 0.5671 | 0.8833 | 0.9069 | 0.8833 | 0.8833 |
0.0074 | 4.3333 | 1300 | 0.6269 | 0.8742 | 0.8902 | 0.8742 | 0.8711 |
0.0043 | 4.6667 | 1400 | 0.6497 | 0.8792 | 0.8998 | 0.8792 | 0.8800 |
0.133 | 5.0 | 1500 | 0.7292 | 0.8733 | 0.9075 | 0.8733 | 0.8738 |
0.0012 | 5.3333 | 1600 | 0.7823 | 0.8633 | 0.8799 | 0.8633 | 0.8637 |
0.0009 | 5.6667 | 1700 | 0.4115 | 0.915 | 0.9186 | 0.915 | 0.9156 |
0.0011 | 6.0 | 1800 | 0.8521 | 0.85 | 0.8619 | 0.85 | 0.8493 |
0.001 | 6.3333 | 1900 | 0.4895 | 0.9108 | 0.9263 | 0.9108 | 0.9126 |
0.0219 | 6.6667 | 2000 | 0.3821 | 0.9283 | 0.9298 | 0.9283 | 0.9282 |
0.0008 | 7.0 | 2100 | 0.7710 | 0.8683 | 0.8868 | 0.8683 | 0.8666 |
0.0007 | 7.3333 | 2200 | 0.5704 | 0.9108 | 0.9179 | 0.9108 | 0.9073 |
0.0014 | 7.6667 | 2300 | 0.6604 | 0.8925 | 0.8981 | 0.8925 | 0.8902 |
0.0005 | 8.0 | 2400 | 0.5364 | 0.9075 | 0.9095 | 0.9075 | 0.9061 |
0.0005 | 8.3333 | 2500 | 0.5356 | 0.9075 | 0.9093 | 0.9075 | 0.9062 |
0.0004 | 8.6667 | 2600 | 0.5364 | 0.9067 | 0.9082 | 0.9067 | 0.9053 |
0.0004 | 9.0 | 2700 | 0.7982 | 0.8692 | 0.8722 | 0.8692 | 0.8636 |
0.0004 | 9.3333 | 2800 | 0.7586 | 0.875 | 0.8774 | 0.875 | 0.8706 |
0.0004 | 9.6667 | 2900 | 0.7252 | 0.8808 | 0.8837 | 0.8808 | 0.8774 |
0.0003 | 10.0 | 3000 | 0.6126 | 0.8992 | 0.9037 | 0.8992 | 0.8995 |
0.0003 | 10.3333 | 3100 | 0.6417 | 0.8917 | 0.8889 | 0.8917 | 0.8899 |
0.0003 | 10.6667 | 3200 | 0.6489 | 0.8925 | 0.8901 | 0.8925 | 0.8909 |
0.0003 | 11.0 | 3300 | 0.6508 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
0.0003 | 11.3333 | 3400 | 0.6529 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
0.0003 | 11.6667 | 3500 | 0.6544 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
0.0003 | 12.0 | 3600 | 0.6561 | 0.8917 | 0.8892 | 0.8917 | 0.8900 |
0.0003 | 12.3333 | 3700 | 0.6577 | 0.8925 | 0.8899 | 0.8925 | 0.8907 |
0.0002 | 12.6667 | 3800 | 0.6592 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 13.0 | 3900 | 0.6601 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 13.3333 | 4000 | 0.6613 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 13.6667 | 4100 | 0.6622 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 14.0 | 4200 | 0.6629 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 14.3333 | 4300 | 0.6635 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 14.6667 | 4400 | 0.6638 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
0.0002 | 15.0 | 4500 | 0.6640 | 0.8933 | 0.8906 | 0.8933 | 0.8915 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.928
- Precision on imagefoldertest set self-reported0.930
- Recall on imagefoldertest set self-reported0.928
- F1 on imagefoldertest set self-reported0.928