vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2879
- Accuracy: 0.9242
- Precision: 0.9296
- Recall: 0.9242
- F1: 0.9248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2837 | 0.3333 | 100 | 0.5470 | 0.8333 | 0.8693 | 0.8333 | 0.8325 |
0.1498 | 0.6667 | 200 | 0.4199 | 0.8658 | 0.8833 | 0.8658 | 0.8647 |
0.0979 | 1.0 | 300 | 0.4712 | 0.8783 | 0.9015 | 0.8783 | 0.8799 |
0.009 | 1.3333 | 400 | 0.4957 | 0.885 | 0.8933 | 0.885 | 0.8819 |
0.0226 | 1.6667 | 500 | 0.2879 | 0.9242 | 0.9296 | 0.9242 | 0.9248 |
0.0722 | 2.0 | 600 | 0.4449 | 0.8875 | 0.8906 | 0.8875 | 0.8869 |
0.0043 | 2.3333 | 700 | 0.3699 | 0.9125 | 0.9221 | 0.9125 | 0.9104 |
0.0678 | 2.6667 | 800 | 0.6081 | 0.8792 | 0.8872 | 0.8792 | 0.8760 |
0.1178 | 3.0 | 900 | 0.5728 | 0.8767 | 0.8748 | 0.8767 | 0.8744 |
0.0297 | 3.3333 | 1000 | 0.3977 | 0.9258 | 0.9267 | 0.9258 | 0.9257 |
0.0813 | 3.6667 | 1100 | 1.1116 | 0.8283 | 0.8462 | 0.8283 | 0.8153 |
0.0336 | 4.0 | 1200 | 0.9246 | 0.82 | 0.8215 | 0.82 | 0.8155 |
0.0291 | 4.3333 | 1300 | 0.6674 | 0.8808 | 0.8980 | 0.8808 | 0.8819 |
0.1018 | 4.6667 | 1400 | 0.7256 | 0.8667 | 0.8760 | 0.8667 | 0.8641 |
0.0739 | 5.0 | 1500 | 0.4149 | 0.8908 | 0.9082 | 0.8908 | 0.8913 |
0.0017 | 5.3333 | 1600 | 0.3553 | 0.9208 | 0.9291 | 0.9208 | 0.9219 |
0.0011 | 5.6667 | 1700 | 0.3934 | 0.915 | 0.9188 | 0.915 | 0.9157 |
0.0056 | 6.0 | 1800 | 0.8180 | 0.8725 | 0.9139 | 0.8725 | 0.8733 |
0.001 | 6.3333 | 1900 | 0.3790 | 0.9225 | 0.9216 | 0.9225 | 0.9217 |
0.0055 | 6.6667 | 2000 | 0.6404 | 0.88 | 0.8910 | 0.88 | 0.8765 |
0.0007 | 7.0 | 2100 | 0.5133 | 0.9017 | 0.9073 | 0.9017 | 0.9023 |
0.0009 | 7.3333 | 2200 | 0.4628 | 0.92 | 0.9296 | 0.92 | 0.9189 |
0.0007 | 7.6667 | 2300 | 0.8405 | 0.8617 | 0.8744 | 0.8617 | 0.8581 |
0.1144 | 8.0 | 2400 | 1.0096 | 0.8592 | 0.8954 | 0.8592 | 0.8567 |
0.0007 | 8.3333 | 2500 | 0.6318 | 0.8983 | 0.9113 | 0.8983 | 0.8977 |
0.0005 | 8.6667 | 2600 | 0.4929 | 0.9075 | 0.9135 | 0.9075 | 0.9076 |
0.0013 | 9.0 | 2700 | 0.6148 | 0.8883 | 0.8955 | 0.8883 | 0.8866 |
0.001 | 9.3333 | 2800 | 1.0043 | 0.8392 | 0.8538 | 0.8392 | 0.8355 |
0.0004 | 9.6667 | 2900 | 0.9713 | 0.8425 | 0.8556 | 0.8425 | 0.8390 |
0.0004 | 10.0 | 3000 | 0.9737 | 0.865 | 0.8977 | 0.865 | 0.8634 |
0.0004 | 10.3333 | 3100 | 0.8766 | 0.8683 | 0.8835 | 0.8683 | 0.8673 |
0.0004 | 10.6667 | 3200 | 0.8620 | 0.8683 | 0.8808 | 0.8683 | 0.8672 |
0.0003 | 11.0 | 3300 | 0.8669 | 0.8675 | 0.8803 | 0.8675 | 0.8665 |
0.0003 | 11.3333 | 3400 | 0.8712 | 0.8667 | 0.8789 | 0.8667 | 0.8656 |
0.0003 | 11.6667 | 3500 | 0.8732 | 0.8675 | 0.8797 | 0.8675 | 0.8665 |
0.0003 | 12.0 | 3600 | 0.8754 | 0.8658 | 0.8782 | 0.8658 | 0.8648 |
0.0003 | 12.3333 | 3700 | 0.8775 | 0.8658 | 0.8782 | 0.8658 | 0.8648 |
0.0003 | 12.6667 | 3800 | 0.8797 | 0.865 | 0.8772 | 0.865 | 0.8640 |
0.0003 | 13.0 | 3900 | 0.8816 | 0.865 | 0.8772 | 0.865 | 0.8640 |
0.0003 | 13.3333 | 4000 | 0.8835 | 0.865 | 0.8772 | 0.865 | 0.8640 |
0.0003 | 13.6667 | 4100 | 0.8844 | 0.865 | 0.8769 | 0.865 | 0.8639 |
0.0003 | 14.0 | 4200 | 0.8852 | 0.8658 | 0.8775 | 0.8658 | 0.8648 |
0.0002 | 14.3333 | 4300 | 0.8859 | 0.8667 | 0.8780 | 0.8667 | 0.8655 |
0.0002 | 14.6667 | 4400 | 0.8865 | 0.8675 | 0.8786 | 0.8675 | 0.8664 |
0.0002 | 15.0 | 4500 | 0.8868 | 0.8675 | 0.8786 | 0.8675 | 0.8664 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.924
- Precision on imagefoldertest set self-reported0.930
- Recall on imagefoldertest set self-reported0.924
- F1 on imagefoldertest set self-reported0.925