metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: first_try
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.8973091707852828
first_try
This model is a fine-tuned version of bert-base-uncased on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.5902
- Accuracy: 0.8973
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | |
---|---|---|---|---|---|
0.8032 | 1.0 | 3274 | 0.3192 | 0.8891 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) |
0.8032 | 1.0 | 3274 | 0.2594 | 0.9059 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
0.5165 | 2.0 | 6548 | 0.3693 | 0.8925 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) |
0.5165 | 2.0 | 6548 | 0.2860 | 0.9200 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
0.2972 | 3.0 | 9822 | 0.4699 | 0.8949 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) |
0.2972 | 3.0 | 9822 | 0.3910 | 0.9162 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
0.1611 | 4.0 | 13096 | 0.5542 | 0.8964 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) |
0.1611 | 4.0 | 13096 | 0.4473 | 0.9160 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
0.1155 | 5.0 | 16370 | 0.5926 | 0.8969 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) |
0.1155 | 5.0 | 16370 | 0.4788 | 0.9180 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
0.0867 | 6.0 | 19644 | 0.6002 | 0.8958 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) |
0.0867 | 6.0 | 19644 | 0.4831 | 0.9176 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
Framework versions
- Transformers 4.29.1
- Pytorch 1.12.1
- Datasets 2.13.1
- Tokenizers 0.13.3