Model Details
This model is a mixed int4 model with group_size 128 and symmetric quantization of Qwen/Qwen3-Coder-480B-A35B-Instruct generated by intel/auto-round algorithm.
mlp.gate
layers fallback to 16 bits to ensure runing successfully on vLLM.
Please follow the license of the original model.
How To Use
vLLM usage
vllm serve Intel/Qwen3-Coder-480B-A35B-Instruct-int4-AutoRound --tensor-parallel-size 4 --max-model-len 65536
INT4 Inference on CPU/Intel GPU/CUDA
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Intel/Qwen3-Coder-480B-A35B-Instruct-int4-AutoRound"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
prompts = [
"Write a quick sort algorithm.",
"Write a flappy bird.",
"Write a llm quantization algorithm.",
]
texts = []
for prompt in prompts:
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
texts.append(text)
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, padding_side="left").to(model.device)
# conduct text completion
outputs = model.generate(
**inputs,
max_new_tokens=65536,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs["input_ids"], outputs)
]
decoded_outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
for i, prompt in enumerate(prompts):
input_id = inputs
print(f"Prompt: {prompt}")
print(f"Generated: {decoded_outputs[i]}")
print("-" * 50)
Generate the model
Here is the sample command to reproduce the model. 3*80G
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
from auto_round import AutoRound
model_name = "Qwen3/Qwen3-Coder-480B-A35B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", torch_dtype="auto", trust_remote_code=True)
block = model.model.layers
device_map = {}
for n, m in block.named_modules():
if isinstance(m, (torch.nn.Linear, transformers.modeling_utils.Conv1D)):
if "experts" in n and ("shared_experts" not in n):
if int(n.split('.')[-2]) < 30:
device = "cuda:0"
elif int(n.split('.')[-2]) >= 30 and int(n.split('.')[-2]) < 95:
device = "cuda:1"
elif int(n.split('.')[-2]) >= 95:
device = "cuda:2"
else:
device = "cuda:0"
n = n[2:]
device_map.update({n: device})
layer_config = {}
for n, m in model.named_modules():
if "mlp.gate" in n: ## vllm only support 16 bit for this layer
layer_config[n] = {"bits": 16}
autoround = AutoRound(
model=model, tokenizer=tokenizer, device_map=device_map, nsamples=512,dataset="github-code-clean", layer_config=layer_config)
autoround.quantize_and_save(format="auto_round", output_dir="./Qwen3-Coder-480B-A35B-Instruct-int4")
Ethical Considerations and Limitations
The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Therefore, before deploying any applications of the model, developers should perform safety testing.
Caveats and Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
Here are a couple of useful links to learn more about Intel's AI software:
- Intel Neural Compressor link
Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
Cite
@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
- Downloads last month
- 169
Model tree for Intel/Qwen3-Coder-480B-A35B-Instruct-int4-AutoRound
Base model
Qwen/Qwen3-Coder-480B-A35B-Instruct