Inferless

Serverless GPUs to scale your machine learning inference without any hassle of managing servers, deploy complicated and custom models with ease.

Go through this tutorial, for quickly deploy of DeciLM-7B using Inferless


DeciLM-7B - GPTQ

Description

This repo contains GPTQ model files for Deci's DeciLM-7B.

About GPTQ

GPTQ is a method that compresses the model size and accelerates inference by quantizing weights based on a calibration dataset, aiming to minimize mean squared error in a single post-quantization step. GPTQ achieves both memory efficiency and faster inference.

It is supported by:

Shared files, and GPTQ parameters

Models are released as sharded safetensors files.

Branch Bits GS AWQ Dataset Seq Len Size
main 4 128 VMware Open Instruct 4096 5.96 GB

How to use

You will need the following software packages and python libraries:

build:
  cuda_version: "12.1.1"
  system_packages:
    - "libssl-dev"
  python_packages:
    - "torch==2.1.2"
    - "vllm==0.2.6"
    - "transformers==4.36.2"
    - "accelerate==0.25.0"

Here is the code for app.py

from vllm import LLM, SamplingParams

class InferlessPythonModel:
    def initialize(self):

        self.sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256)
        self.llm = LLM(model="Inferless/deciLM-7B-GPTQ", quantization="gptq", dtype="float16")

    def infer(self, inputs):
        prompts = inputs["prompt"]
        result = self.llm.generate(prompts, self.sampling_params)
        result_output = [[[output.outputs[0].text,output.outputs[0].token_ids] for output in result]

        return {'generated_result': result_output[0]}

    def finalize(self):
        pass
Downloads last month
11
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for Inferless/deciLM-7B-GPTQ

Base model

Deci/DeciLM-7B
Finetuned
(3)
this model