IGNF
/

AGarioud's picture
Update README.md
6d9c343 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
library_name: pytorch
model-index:
  - name: FLAIR-HUB_LPIS-A_swinbase-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 22.303
            name: mIoU
          - type: OA
            value: 86.634
            name: Overall Accuracy
          - type: IoU
            value: 83.86
            name: IoU building
          - type: IoU
            value: 78.38
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 61.59
            name: IoU impervious surface
          - type: IoU
            value: 57.17
            name: IoU pervious surface
          - type: IoU
            value: 62.94
            name: IoU bare soil
          - type: IoU
            value: 90.35
            name: IoU water
          - type: IoU
            value: 63.38
            name: IoU snow
          - type: IoU
            value: 54.34
            name: IoU herbaceous vegetation
          - type: IoU
            value: 57.14
            name: IoU agricultural land
          - type: IoU
            value: 34.85
            name: IoU plowed land
          - type: IoU
            value: 43.419
            name: IoU vineyard
          - type: IoU
            value: 71.73
            name: IoU deciduous
          - type: IoU
            value: 62.6
            name: IoU coniferous
          - type: IoU
            value: 30.19
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LPIS-A_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    22.30% 86.63% 31.21% 37.26% 31.06%
  • Params.: 89.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 22.30%
Overall Accuracy 86.63%
F-score 31.21%
Precision 37.26%
Recall 31.06%
Class IoU (%) F-score (%) Precision (%) Recall (%)
grasses 49.37 66.10 72.82 60.53
wheat 34.23 51.00 41.11 67.15
barley 13.13 23.21 40.73 16.23
maize 60.50 75.39 77.30 73.57
other cereals 3.49 6.74 8.51 5.57
rice 0.00 0.00 0.00 0.00
flax/hemp/tobacco 2.71 5.27 63.81 2.75
sunflower 12.59 22.36 17.40 31.26
rapeseed 37.98 55.05 61.15 50.06
other oilseed crops 0.00 0.00 0.00 0.00
soy 0.00 0.00 0.00 0.00
other protein crops 3.05 5.93 6.82 5.24
fodder legumes 13.26 23.41 33.03 18.14
beetroots 53.90 70.04 64.80 76.20
potatoes 7.48 13.92 11.05 18.81
other arable crops 19.74 32.97 33.93 32.07
vineyard 43.42 60.55 55.72 66.29
olive groves 13.55 23.87 42.01 16.67
fruits orchards 36.82 53.82 51.31 56.60
nut orchards 2.87 5.59 10.36 3.83
other permanent crops 14.78 25.75 66.07 15.99
mixed crops 1.49 2.93 6.75 1.87
background 88.61 93.96 92.41 95.56

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080