metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LPIS-A_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 22.303
name: mIoU
- type: OA
value: 86.634
name: Overall Accuracy
- type: IoU
value: 83.86
name: IoU building
- type: IoU
value: 78.38
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 61.59
name: IoU impervious surface
- type: IoU
value: 57.17
name: IoU pervious surface
- type: IoU
value: 62.94
name: IoU bare soil
- type: IoU
value: 90.35
name: IoU water
- type: IoU
value: 63.38
name: IoU snow
- type: IoU
value: 54.34
name: IoU herbaceous vegetation
- type: IoU
value: 57.14
name: IoU agricultural land
- type: IoU
value: 34.85
name: IoU plowed land
- type: IoU
value: 43.419
name: IoU vineyard
- type: IoU
value: 71.73
name: IoU deciduous
- type: IoU
value: 62.6
name: IoU coniferous
- type: IoU
value: 30.19
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LPIS-A_swinbase-upernet
- Encoder: swin_base_patch4_window12_384
- Decoder: upernet
- Metrics:
- Params.: 89.4
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Project page: https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 22.30% |
Overall Accuracy | 86.63% |
F-score | 31.21% |
Precision | 37.26% |
Recall | 31.06% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
grasses | 49.37 | 66.10 | 72.82 | 60.53 |
wheat | 34.23 | 51.00 | 41.11 | 67.15 |
barley | 13.13 | 23.21 | 40.73 | 16.23 |
maize | 60.50 | 75.39 | 77.30 | 73.57 |
other cereals | 3.49 | 6.74 | 8.51 | 5.57 |
rice | 0.00 | 0.00 | 0.00 | 0.00 |
flax/hemp/tobacco | 2.71 | 5.27 | 63.81 | 2.75 |
sunflower | 12.59 | 22.36 | 17.40 | 31.26 |
rapeseed | 37.98 | 55.05 | 61.15 | 50.06 |
other oilseed crops | 0.00 | 0.00 | 0.00 | 0.00 |
soy | 0.00 | 0.00 | 0.00 | 0.00 |
other protein crops | 3.05 | 5.93 | 6.82 | 5.24 |
fodder legumes | 13.26 | 23.41 | 33.03 | 18.14 |
beetroots | 53.90 | 70.04 | 64.80 | 76.20 |
potatoes | 7.48 | 13.92 | 11.05 | 18.81 |
other arable crops | 19.74 | 32.97 | 33.93 | 32.07 |
vineyard | 43.42 | 60.55 | 55.72 | 66.29 |
olive groves | 13.55 | 23.87 | 42.01 | 16.67 |
fruits orchards | 36.82 | 53.82 | 51.31 | 56.60 |
nut orchards | 2.87 | 5.59 | 10.36 | 3.83 |
other permanent crops | 14.78 | 25.75 | 66.07 | 15.99 |
mixed crops | 1.49 | 2.93 | 6.75 | 1.87 |
background | 88.61 | 93.96 | 92.41 | 95.56 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080