metadata
license: etalab-2.0
pipeline_tag: image-segmentation
library_name: pytorch
tags:
- semantic segmentation
- pytorch
- landcover
model-index:
- name: FLAIR-HUB_LC-A_RVB_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 64.054
name: mIoU
- type: OA
value: 76.784
name: Overall Accuracy
- type: IoU
value: 83.769
name: IoU building
- type: IoU
value: 77.891
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 75.029
name: IoU impervious surface
- type: IoU
value: 56.972
name: IoU pervious surface
- type: IoU
value: 65.214
name: IoU bare soil
- type: IoU
value: 90.08
name: IoU water
- type: IoU
value: 67.767
name: IoU snow
- type: IoU
value: 52.851
name: IoU herbaceous vegetation
- type: IoU
value: 56.529
name: IoU agricultural land
- type: IoU
value: 37.34
name: IoU plowed land
- type: IoU
value: 78.876
name: IoU vineyard
- type: IoU
value: 70.071
name: IoU deciduous
- type: IoU
value: 58.948
name: IoU coniferous
- type: IoU
value: 30.973
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LC-A_RVB_swinbase-upernet
- Encoder: swin_base_patch4_window12_384
- Decoder: upernet
- Metrics:
- Params.: 89.4
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://huggingface.co/papers/2506.07080
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [105.66, 111.35, 102.18 ]
std: [52.23, 45.62, 44.30]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 64.05% |
Overall Accuracy | 76.78% |
F-score | 76.88% |
Precision | 77.71% |
Recall | 76.59% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 83.77 | 91.17 | 91.42 | 90.92 |
greenhouse | 77.89 | 87.57 | 85.28 | 89.99 |
swimming pool | 58.50 | 73.82 | 77.36 | 70.58 |
impervious surface | 75.03 | 85.73 | 87.13 | 84.38 |
pervious surface | 56.97 | 72.59 | 70.18 | 75.17 |
bare soil | 65.21 | 78.94 | 74.64 | 83.78 |
water | 90.08 | 94.78 | 95.00 | 94.57 |
snow | 67.77 | 80.79 | 97.53 | 68.95 |
herbaceous vegetation | 52.85 | 69.15 | 71.87 | 66.64 |
agricultural land | 56.53 | 72.23 | 68.13 | 76.85 |
plowed land | 37.34 | 54.38 | 51.25 | 57.91 |
vineyard | 78.88 | 88.19 | 86.89 | 89.53 |
deciduous | 70.07 | 82.40 | 81.00 | 83.85 |
coniferous | 58.95 | 74.17 | 79.78 | 69.30 |
brushwood | 30.97 | 47.30 | 48.20 | 46.43 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080