IGNF
/

AGarioud's picture
Update README.md
0935d3e verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
library_name: pytorch
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-A_RVB_swinbase-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 64.054
            name: mIoU
          - type: OA
            value: 76.784
            name: Overall Accuracy
          - type: IoU
            value: 83.769
            name: IoU building
          - type: IoU
            value: 77.891
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 75.029
            name: IoU impervious surface
          - type: IoU
            value: 56.972
            name: IoU pervious surface
          - type: IoU
            value: 65.214
            name: IoU bare soil
          - type: IoU
            value: 90.08
            name: IoU water
          - type: IoU
            value: 67.767
            name: IoU snow
          - type: IoU
            value: 52.851
            name: IoU herbaceous vegetation
          - type: IoU
            value: 56.529
            name: IoU agricultural land
          - type: IoU
            value: 37.34
            name: IoU plowed land
          - type: IoU
            value: 78.876
            name: IoU vineyard
          - type: IoU
            value: 70.071
            name: IoU deciduous
          - type: IoU
            value: 58.948
            name: IoU coniferous
          - type: IoU
            value: 30.973
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_RVB_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    64.05% 76.78% 76.88% 77.71% 76.59%
  • Params.: 89.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [105.66, 111.35, 102.18 ]
        std:  [52.23, 45.62, 44.30]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 64.05%
Overall Accuracy 76.78%
F-score 76.88%
Precision 77.71%
Recall 76.59%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 83.77 91.17 91.42 90.92
greenhouse 77.89 87.57 85.28 89.99
swimming pool 58.50 73.82 77.36 70.58
impervious surface 75.03 85.73 87.13 84.38
pervious surface 56.97 72.59 70.18 75.17
bare soil 65.21 78.94 74.64 83.78
water 90.08 94.78 95.00 94.57
snow 67.77 80.79 97.53 68.95
herbaceous vegetation 52.85 69.15 71.87 66.64
agricultural land 56.53 72.23 68.13 76.85
plowed land 37.34 54.38 51.25 57.91
vineyard 78.88 88.19 86.89 89.53
deciduous 70.07 82.40 81.00 83.85
coniferous 58.95 74.17 79.78 69.30
brushwood 30.97 47.30 48.20 46.43

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080