AGarioud's picture
Update README.md
be01575 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
library_name: pytorch
model-index:
  - name: FLAIR-HUB_LC-A_convnextv2base-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 63.771
            name: mIoU
          - type: OA
            value: 77.031
            name: Overall Accuracy
          - type: IoU
            value: 83.5
            name: IoU building
          - type: IoU
            value: 76.548
            name: IoU greenhouse
          - type: IoU
            value: 59.37
            name: IoU swimming pool
          - type: IoU
            value: 74.837
            name: IoU impervious surface
          - type: IoU
            value: 56.544
            name: IoU pervious surface
          - type: IoU
            value: 63.005
            name: IoU bare soil
          - type: IoU
            value: 89.533
            name: IoU water
          - type: IoU
            value: 67.806
            name: IoU snow
          - type: IoU
            value: 53.766
            name: IoU herbaceous vegetation
          - type: IoU
            value: 57.318
            name: IoU agricultural land
          - type: IoU
            value: 34.667
            name: IoU plowed land
          - type: IoU
            value: 78.533
            name: IoU vineyard
          - type: IoU
            value: 70.751
            name: IoU deciduous
          - type: IoU
            value: 61.192
            name: IoU coniferous
          - type: IoU
            value: 29.189
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_convnextv2base-unet

  • Encoder: convnextv2_base
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    63.77% 77.03% 76.60% 76.94% 76.67%
  • Params.: 90.2

General Informations


Training Config Hyperparameters

- Model architecture: convnextv2_base-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 63.77%
Overall Accuracy 77.03%
F-score 76.60%
Precision 76.94%
Recall 76.67%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 83.50 91.01 92.26 89.79
greenhouse 76.55 86.72 82.49 91.40
swimming pool 59.37 74.51 74.21 74.81
impervious surface 74.84 85.61 85.22 86.00
pervious surface 56.54 72.24 70.62 73.94
bare soil 63.00 77.30 73.17 81.93
water 89.53 94.48 95.19 93.78
snow 67.81 80.81 96.07 69.74
herbaceous vegetation 53.77 69.93 71.69 68.26
agricultural land 57.32 72.87 70.08 75.89
plowed land 34.67 51.49 50.81 52.18
vineyard 78.53 87.98 84.50 91.75
deciduous 70.75 82.87 82.33 83.42
coniferous 61.19 75.92 77.47 74.44
brushwood 29.19 45.19 47.94 42.74

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080