metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LC-A_convnextv2base-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 63.771
name: mIoU
- type: OA
value: 77.031
name: Overall Accuracy
- type: IoU
value: 83.5
name: IoU building
- type: IoU
value: 76.548
name: IoU greenhouse
- type: IoU
value: 59.37
name: IoU swimming pool
- type: IoU
value: 74.837
name: IoU impervious surface
- type: IoU
value: 56.544
name: IoU pervious surface
- type: IoU
value: 63.005
name: IoU bare soil
- type: IoU
value: 89.533
name: IoU water
- type: IoU
value: 67.806
name: IoU snow
- type: IoU
value: 53.766
name: IoU herbaceous vegetation
- type: IoU
value: 57.318
name: IoU agricultural land
- type: IoU
value: 34.667
name: IoU plowed land
- type: IoU
value: 78.533
name: IoU vineyard
- type: IoU
value: 70.751
name: IoU deciduous
- type: IoU
value: 61.192
name: IoU coniferous
- type: IoU
value: 29.189
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LC-A_convnextv2base-unet
- Encoder: convnextv2_base
- Decoder: upernet
- Metrics:
- Params.: 90.2
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: convnextv2_base-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 63.77% |
Overall Accuracy | 77.03% |
F-score | 76.60% |
Precision | 76.94% |
Recall | 76.67% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 83.50 | 91.01 | 92.26 | 89.79 |
greenhouse | 76.55 | 86.72 | 82.49 | 91.40 |
swimming pool | 59.37 | 74.51 | 74.21 | 74.81 |
impervious surface | 74.84 | 85.61 | 85.22 | 86.00 |
pervious surface | 56.54 | 72.24 | 70.62 | 73.94 |
bare soil | 63.00 | 77.30 | 73.17 | 81.93 |
water | 89.53 | 94.48 | 95.19 | 93.78 |
snow | 67.81 | 80.81 | 96.07 | 69.74 |
herbaceous vegetation | 53.77 | 69.93 | 71.69 | 68.26 |
agricultural land | 57.32 | 72.87 | 70.08 | 75.89 |
plowed land | 34.67 | 51.49 | 50.81 | 52.18 |
vineyard | 78.53 | 87.98 | 84.50 | 91.75 |
deciduous | 70.75 | 82.87 | 82.33 | 83.42 |
coniferous | 61.19 | 75.92 | 77.47 | 74.44 |
brushwood | 29.19 | 45.19 | 47.94 | 42.74 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080