metadata
model-index:
- name: Yuan-embedding-1.0
results:
- dataset:
config: default
name: MTEB AFQMC (default)
revision: None
split: validation
type: C-MTEB/AFQMC
metrics:
- type: cosine_pearson
value: 56.398777687800596
- type: cosine_spearman
value: 60.2976392017466
- type: manhattan_pearson
value: 58.34432755369896
- type: manhattan_spearman
value: 59.633715024557176
- type: euclidean_pearson
value: 58.33199470250656
- type: euclidean_spearman
value: 59.633393360323595
- type: main_score
value: 60.2976392017466
task:
type: STS
- dataset:
config: default
name: MTEB ATEC (default)
revision: None
split: test
type: C-MTEB/ATEC
metrics:
- type: cosine_pearson
value: 56.418711941754694
- type: cosine_spearman
value: 58.49782527525838
- type: manhattan_pearson
value: 62.05335398720773
- type: manhattan_spearman
value: 58.18176592298454
- type: euclidean_pearson
value: 62.06479799788818
- type: euclidean_spearman
value: 58.18182671971488
- type: main_score
value: 58.49782527525838
task:
type: STS
- dataset:
config: zh
name: MTEB AmazonReviewsClassification (zh)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 46.656000000000006
- type: accuracy_stderr
value: 1.1704631561907444
- type: f1
value: 45.75911645865614
- type: f1_stderr
value: 1.323301406018355
- type: main_score
value: 46.656000000000006
task:
type: Classification
- dataset:
config: zh
name: MTEB AmazonReviewsClassification (zh)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: validation
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 45.84599999999999
- type: accuracy_stderr
value: 1.0539468677310073
- type: f1
value: 45.03273670979488
- type: f1_stderr
value: 1.00417269917164
- type: main_score
value: 45.84599999999999
task:
type: Classification
- dataset:
config: default
name: MTEB BQ (default)
revision: None
split: test
type: C-MTEB/BQ
metrics:
- type: cosine_pearson
value: 71.33099160181597
- type: cosine_spearman
value: 73.06963287952199
- type: manhattan_pearson
value: 70.65314181752566
- type: manhattan_spearman
value: 72.34604440078336
- type: euclidean_pearson
value: 70.67624292501411
- type: euclidean_spearman
value: 72.3597691712343
- type: main_score
value: 73.06963287952199
task:
type: STS
- dataset:
config: default
name: MTEB CLSClusteringP2P (default)
revision: None
split: test
type: C-MTEB/CLSClusteringP2P
metrics:
- type: v_measure
value: 53.79921861868626
- type: v_measure_std
value: 2.073016548125077
- type: main_score
value: 53.79921861868626
task:
type: Clustering
- dataset:
config: default
name: MTEB CLSClusteringS2S (default)
revision: None
split: test
type: C-MTEB/CLSClusteringS2S
metrics:
- type: v_measure
value: 46.22496957569903
- type: v_measure_std
value: 1.4660184854965337
- type: main_score
value: 46.22496957569903
task:
type: Clustering
- dataset:
config: default
name: MTEB CMedQAv1-reranking (default)
revision: None
split: test
type: C-MTEB/CMedQAv1-reranking
metrics:
- type: map
value: 90.00883554654739
- type: mrr
value: 92.02547619047618
- type: main_score
value: 90.00883554654739
task:
type: Reranking
- dataset:
config: default
name: MTEB CMedQAv2-reranking (default)
revision: None
split: test
type: C-MTEB/CMedQAv2-reranking
metrics:
- type: map
value: 92.47561424216632
- type: mrr
value: 94.60039682539681
- type: main_score
value: 92.47561424216632
task:
type: Reranking
- dataset:
config: default
name: MTEB CmedqaRetrieval (default)
revision: None
split: dev
type: C-MTEB/CmedqaRetrieval
metrics:
- type: map_at_1
value: 29.935000000000002
- type: map_at_10
value: 44.143
- type: map_at_100
value: 45.999
- type: map_at_1000
value: 46.084
- type: map_at_3
value: 39.445
- type: map_at_5
value: 42.218
- type: mrr_at_1
value: 44.711
- type: mrr_at_10
value: 53.88699999999999
- type: mrr_at_100
value: 54.813
- type: mrr_at_1000
value: 54.834
- type: mrr_at_3
value: 51.1
- type: mrr_at_5
value: 52.827
- type: ndcg_at_1
value: 44.711
- type: ndcg_at_10
value: 51.471999999999994
- type: ndcg_at_100
value: 58.362
- type: ndcg_at_1000
value: 59.607
- type: ndcg_at_3
value: 45.558
- type: ndcg_at_5
value: 48.345
- type: precision_at_1
value: 44.711
- type: precision_at_10
value: 11.1
- type: precision_at_100
value: 1.6650000000000003
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 25.306
- type: precision_at_5
value: 18.404999999999998
- type: recall_at_1
value: 29.935000000000002
- type: recall_at_10
value: 63.366
- type: recall_at_100
value: 91.375
- type: recall_at_1000
value: 99.167
- type: recall_at_3
value: 45.888
- type: recall_at_5
value: 54.169
- type: main_score
value: 51.471999999999994
task:
type: Retrieval
- dataset:
config: default
name: MTEB Cmnli (default)
revision: None
split: validation
type: C-MTEB/CMNLI
metrics:
- type: cos_sim_accuracy
value: 80.3968731208659
- type: cos_sim_accuracy_threshold
value: 86.61384582519531
- type: cos_sim_ap
value: 88.21894124132636
- type: cos_sim_f1
value: 81.67308750687947
- type: cos_sim_f1_threshold
value: 86.04017496109009
- type: cos_sim_precision
value: 77.1630615640599
- type: cos_sim_recall
value: 86.7430441898527
- type: dot_accuracy
value: 67.7931449188214
- type: dot_accuracy_threshold
value: 92027.47802734375
- type: dot_ap
value: 75.73048600318765
- type: dot_f1
value: 71.64554512914772
- type: dot_f1_threshold
value: 83535.70556640625
- type: dot_precision
value: 61.1056105610561
- type: dot_recall
value: 86.57937806873977
- type: euclidean_accuracy
value: 78.52074564040889
- type: euclidean_accuracy_threshold
value: 1688.486671447754
- type: euclidean_ap
value: 86.40643721988414
- type: euclidean_f1
value: 79.97822536744692
- type: euclidean_f1_threshold
value: 1748.1914520263672
- type: euclidean_precision
value: 74.83700081499592
- type: euclidean_recall
value: 85.87795183539865
- type: manhattan_accuracy
value: 78.59290438965725
- type: manhattan_accuracy_threshold
value: 57066.162109375
- type: manhattan_ap
value: 86.38300352696045
- type: manhattan_f1
value: 79.84587391630097
- type: manhattan_f1_threshold
value: 59686.376953125
- type: manhattan_precision
value: 73.62810896170548
- type: manhattan_recall
value: 87.21066167874679
- type: max_accuracy
value: 80.3968731208659
- type: max_ap
value: 88.21894124132636
- type: max_f1
value: 81.67308750687947
task:
type: PairClassification
- dataset:
config: default
name: MTEB CovidRetrieval (default)
revision: None
split: dev
type: C-MTEB/CovidRetrieval
metrics:
- type: map_at_1
value: 85.485
- type: map_at_10
value: 91.135
- type: map_at_100
value: 91.16199999999999
- type: map_at_1000
value: 91.16300000000001
- type: map_at_3
value: 90.499
- type: map_at_5
value: 90.91
- type: mrr_at_1
value: 85.88
- type: mrr_at_10
value: 91.133
- type: mrr_at_100
value: 91.16
- type: mrr_at_1000
value: 91.161
- type: mrr_at_3
value: 90.551
- type: mrr_at_5
value: 90.904
- type: ndcg_at_1
value: 85.88
- type: ndcg_at_10
value: 93.163
- type: ndcg_at_100
value: 93.282
- type: ndcg_at_1000
value: 93.309
- type: ndcg_at_3
value: 91.943
- type: ndcg_at_5
value: 92.637
- type: precision_at_1
value: 85.88
- type: precision_at_10
value: 10.032
- type: precision_at_100
value: 1.008
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 32.315
- type: precision_at_5
value: 19.747
- type: recall_at_1
value: 85.485
- type: recall_at_10
value: 99.262
- type: recall_at_100
value: 99.789
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 95.96900000000001
- type: recall_at_5
value: 97.682
- type: main_score
value: 93.163
task:
type: Retrieval
- dataset:
config: default
name: MTEB DuRetrieval (default)
revision: None
split: dev
type: C-MTEB/DuRetrieval
metrics:
- type: map_at_1
value: 27.29
- type: map_at_10
value: 82.832
- type: map_at_100
value: 85.482
- type: map_at_1000
value: 85.52
- type: map_at_3
value: 57.964000000000006
- type: map_at_5
value: 72.962
- type: mrr_at_1
value: 92.35
- type: mrr_at_10
value: 94.77499999999999
- type: mrr_at_100
value: 94.825
- type: mrr_at_1000
value: 94.827
- type: mrr_at_3
value: 94.50800000000001
- type: mrr_at_5
value: 94.688
- type: ndcg_at_1
value: 92.35
- type: ndcg_at_10
value: 89.432
- type: ndcg_at_100
value: 91.813
- type: ndcg_at_1000
value: 92.12
- type: ndcg_at_3
value: 88.804
- type: ndcg_at_5
value: 87.681
- type: precision_at_1
value: 92.35
- type: precision_at_10
value: 42.32
- type: precision_at_100
value: 4.812
- type: precision_at_1000
value: 0.48900000000000005
- type: precision_at_3
value: 79.367
- type: precision_at_5
value: 66.86999999999999
- type: recall_at_1
value: 27.29
- type: recall_at_10
value: 90.093
- type: recall_at_100
value: 97.916
- type: recall_at_1000
value: 99.40299999999999
- type: recall_at_3
value: 59.816
- type: recall_at_5
value: 76.889
- type: main_score
value: 89.432
task:
type: Retrieval
- dataset:
config: default
name: MTEB EcomRetrieval (default)
revision: None
split: dev
type: C-MTEB/EcomRetrieval
metrics:
- type: map_at_1
value: 55.2
- type: map_at_10
value: 65.767
- type: map_at_100
value: 66.208
- type: map_at_1000
value: 66.219
- type: map_at_3
value: 63.1
- type: map_at_5
value: 64.865
- type: mrr_at_1
value: 55.2
- type: mrr_at_10
value: 65.767
- type: mrr_at_100
value: 66.208
- type: mrr_at_1000
value: 66.219
- type: mrr_at_3
value: 63.1
- type: mrr_at_5
value: 64.865
- type: ndcg_at_1
value: 55.2
- type: ndcg_at_10
value: 70.875
- type: ndcg_at_100
value: 72.931
- type: ndcg_at_1000
value: 73.2
- type: ndcg_at_3
value: 65.526
- type: ndcg_at_5
value: 68.681
- type: precision_at_1
value: 55.2
- type: precision_at_10
value: 8.690000000000001
- type: precision_at_100
value: 0.963
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 24.166999999999998
- type: precision_at_5
value: 16.02
- type: recall_at_1
value: 55.2
- type: recall_at_10
value: 86.9
- type: recall_at_100
value: 96.3
- type: recall_at_1000
value: 98.4
- type: recall_at_3
value: 72.5
- type: recall_at_5
value: 80.10000000000001
- type: main_score
value: 70.875
task:
type: Retrieval
- dataset:
config: default
name: MTEB IFlyTek (default)
revision: None
split: validation
type: C-MTEB/IFlyTek-classification
metrics:
- type: accuracy
value: 46.95652173913043
- type: accuracy_stderr
value: 0.8816372193041417
- type: f1
value: 38.870262239396496
- type: f1_stderr
value: 1.1248427890133785
- type: main_score
value: 46.95652173913043
task:
type: Classification
- dataset:
config: default
name: MTEB JDReview (default)
revision: None
split: test
type: C-MTEB/JDReview-classification
metrics:
- type: accuracy
value: 87.18574108818011
- type: accuracy_stderr
value: 1.828763099528331
- type: ap
value: 56.516251295719414
- type: ap_stderr
value: 3.3789918068717895
- type: f1
value: 82.04209146803106
- type: f1_stderr
value: 2.005027201503808
- type: main_score
value: 87.18574108818011
task:
type: Classification
- dataset:
config: default
name: MTEB LCQMC (default)
revision: None
split: test
type: C-MTEB/LCQMC
metrics:
- type: cosine_pearson
value: 72.67112275922743
- type: cosine_spearman
value: 78.44376213964316
- type: manhattan_pearson
value: 77.51766838932976
- type: manhattan_spearman
value: 78.02885255071602
- type: euclidean_pearson
value: 77.5292348074114
- type: euclidean_spearman
value: 78.04277103380235
- type: main_score
value: 78.44376213964316
task:
type: STS
- dataset:
config: default
name: MTEB MMarcoReranking (default)
revision: None
split: dev
type: C-MTEB/Mmarco-reranking
metrics:
- type: map
value: 37.021133625346174
- type: mrr
value: 35.81428571428572
- type: main_score
value: 37.021133625346174
task:
type: Reranking
- dataset:
config: default
name: MTEB MMarcoRetrieval (default)
revision: None
split: dev
type: C-MTEB/MMarcoRetrieval
metrics:
- type: map_at_1
value: 69.624
- type: map_at_10
value: 78.764
- type: map_at_100
value: 79.038
- type: map_at_1000
value: 79.042
- type: map_at_3
value: 76.846
- type: map_at_5
value: 78.106
- type: mrr_at_1
value: 71.905
- type: mrr_at_10
value: 79.268
- type: mrr_at_100
value: 79.508
- type: mrr_at_1000
value: 79.512
- type: mrr_at_3
value: 77.60000000000001
- type: mrr_at_5
value: 78.701
- type: ndcg_at_1
value: 71.905
- type: ndcg_at_10
value: 82.414
- type: ndcg_at_100
value: 83.59
- type: ndcg_at_1000
value: 83.708
- type: ndcg_at_3
value: 78.803
- type: ndcg_at_5
value: 80.94
- type: precision_at_1
value: 71.905
- type: precision_at_10
value: 9.901
- type: precision_at_100
value: 1.048
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 29.479
- type: precision_at_5
value: 18.828
- type: recall_at_1
value: 69.624
- type: recall_at_10
value: 93.149
- type: recall_at_100
value: 98.367
- type: recall_at_1000
value: 99.29299999999999
- type: recall_at_3
value: 83.67599999999999
- type: recall_at_5
value: 88.752
- type: main_score
value: 82.414
task:
type: Retrieval
- dataset:
config: zh-CN
name: MTEB MassiveIntentClassification (zh-CN)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 77.36045729657029
- type: accuracy_stderr
value: 0.8944498935111289
- type: f1
value: 73.73485209304225
- type: f1_stderr
value: 0.8615191738484445
- type: main_score
value: 77.36045729657029
task:
type: Classification
- dataset:
config: zh-CN
name: MTEB MassiveIntentClassification (zh-CN)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: validation
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 78.16035415641909
- type: accuracy_stderr
value: 0.7514724220154535
- type: f1
value: 75.32402452596266
- type: f1_stderr
value: 0.5969737694527888
- type: main_score
value: 78.16035415641909
task:
type: Classification
- dataset:
config: zh-CN
name: MTEB MassiveScenarioClassification (zh-CN)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 83.31203765971755
- type: accuracy_stderr
value: 1.1063564012537301
- type: f1
value: 82.81655735858999
- type: f1_stderr
value: 0.9643568609098954
- type: main_score
value: 83.31203765971755
task:
type: Classification
- dataset:
config: zh-CN
name: MTEB MassiveScenarioClassification (zh-CN)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: validation
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 83.11362518445647
- type: accuracy_stderr
value: 1.252141689154366
- type: f1
value: 82.56555569957769
- type: f1_stderr
value: 0.858322314243248
- type: main_score
value: 83.11362518445647
task:
type: Classification
- dataset:
config: default
name: MTEB MedicalRetrieval (default)
revision: None
split: dev
type: C-MTEB/MedicalRetrieval
metrics:
- type: map_at_1
value: 63.1
- type: map_at_10
value: 70.816
- type: map_at_100
value: 71.368
- type: map_at_1000
value: 71.379
- type: map_at_3
value: 69.033
- type: map_at_5
value: 70.028
- type: mrr_at_1
value: 63.4
- type: mrr_at_10
value: 70.98400000000001
- type: mrr_at_100
value: 71.538
- type: mrr_at_1000
value: 71.548
- type: mrr_at_3
value: 69.19999999999999
- type: mrr_at_5
value: 70.195
- type: ndcg_at_1
value: 63.1
- type: ndcg_at_10
value: 74.665
- type: ndcg_at_100
value: 77.16199999999999
- type: ndcg_at_1000
value: 77.408
- type: ndcg_at_3
value: 70.952
- type: ndcg_at_5
value: 72.776
- type: precision_at_1
value: 63.1
- type: precision_at_10
value: 8.68
- type: precision_at_100
value: 0.9809999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 25.5
- type: precision_at_5
value: 16.2
- type: recall_at_1
value: 63.1
- type: recall_at_10
value: 86.8
- type: recall_at_100
value: 98.1
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 76.5
- type: recall_at_5
value: 81
- type: main_score
value: 74.665
task:
type: Retrieval
- dataset:
config: default
name: MTEB MultilingualSentiment (default)
revision: None
split: validation
type: C-MTEB/MultilingualSentiment-classification
metrics:
- type: accuracy
value: 75.98
- type: accuracy_stderr
value: 0.8634813257969153
- type: f1
value: 75.98312901227456
- type: f1_stderr
value: 0.9813231777702479
- type: main_score
value: 75.98
task:
type: Classification
- dataset:
config: default
name: MTEB Ocnli (default)
revision: None
split: validation
type: C-MTEB/OCNLI
metrics:
- type: cos_sim_accuracy
value: 80.02165674066053
- type: cos_sim_accuracy_threshold
value: 84.70024466514587
- type: cos_sim_ap
value: 84.5948682253982
- type: cos_sim_f1
value: 80.84291187739463
- type: cos_sim_f1_threshold
value: 82.62853622436523
- type: cos_sim_precision
value: 73.97020157756354
- type: cos_sim_recall
value: 89.1235480464625
- type: dot_accuracy
value: 71.52138603140227
- type: dot_accuracy_threshold
value: 84206.94580078125
- type: dot_ap
value: 77.69986172282461
- type: dot_f1
value: 74.76467951591216
- type: dot_f1_threshold
value: 78842.08984375
- type: dot_precision
value: 64.95327102803739
- type: dot_recall
value: 88.0675818373812
- type: euclidean_accuracy
value: 76.01515971846237
- type: euclidean_accuracy_threshold
value: 1818.9674377441406
- type: euclidean_ap
value: 80.84369691331835
- type: euclidean_f1
value: 78.08988764044943
- type: euclidean_f1_threshold
value: 1922.1363067626953
- type: euclidean_precision
value: 70.14297729184187
- type: euclidean_recall
value: 88.0675818373812
- type: manhattan_accuracy
value: 76.12344342176502
- type: manhattan_accuracy_threshold
value: 61934.478759765625
- type: manhattan_ap
value: 80.8051823205177
- type: manhattan_f1
value: 78.21596244131456
- type: manhattan_f1_threshold
value: 64840.447998046875
- type: manhattan_precision
value: 70.41420118343196
- type: manhattan_recall
value: 87.96198521647307
- type: max_accuracy
value: 80.02165674066053
- type: max_ap
value: 84.5948682253982
- type: max_f1
value: 80.84291187739463
task:
type: PairClassification
- dataset:
config: default
name: MTEB OnlineShopping (default)
revision: None
split: test
type: C-MTEB/OnlineShopping-classification
metrics:
- type: accuracy
value: 93.63
- type: accuracy_stderr
value: 0.7253275122315392
- type: ap
value: 91.66092551327398
- type: ap_stderr
value: 0.9661774073521741
- type: f1
value: 93.61696896914624
- type: f1_stderr
value: 0.7232416235078093
- type: main_score
value: 93.63
task:
type: Classification
- dataset:
config: default
name: MTEB PAWSX (default)
revision: None
split: test
type: C-MTEB/PAWSX
metrics:
- type: cosine_pearson
value: 27.420084312732477
- type: cosine_spearman
value: 36.615019324915316
- type: manhattan_pearson
value: 35.38814491527626
- type: manhattan_spearman
value: 35.989020517540105
- type: euclidean_pearson
value: 35.322828019800475
- type: euclidean_spearman
value: 35.93118948093057
- type: main_score
value: 36.615019324915316
task:
type: STS
- dataset:
config: default
name: MTEB QBQTC (default)
revision: None
split: test
type: C-MTEB/QBQTC
metrics:
- type: cosine_pearson
value: 36.51779732355864
- type: cosine_spearman
value: 38.35615142712016
- type: manhattan_pearson
value: 31.00096996824444
- type: manhattan_spearman
value: 35.22782463612116
- type: euclidean_pearson
value: 31.04604995563808
- type: euclidean_spearman
value: 35.271420992011485
- type: main_score
value: 38.35615142712016
task:
type: STS
- dataset:
config: zh
name: MTEB STS22 (zh)
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 60.76376961662733
- type: cosine_spearman
value: 65.93112312064913
- type: manhattan_pearson
value: 60.18998639945854
- type: manhattan_spearman
value: 64.37697612695015
- type: euclidean_pearson
value: 60.287759656277814
- type: euclidean_spearman
value: 64.37685757691955
- type: main_score
value: 65.93112312064913
task:
type: STS
- dataset:
config: default
name: MTEB STSB (default)
revision: None
split: test
type: C-MTEB/STSB
metrics:
- type: cosine_pearson
value: 79.6320389543562
- type: cosine_spearman
value: 81.9230633773663
- type: manhattan_pearson
value: 80.20746913195181
- type: manhattan_spearman
value: 80.43150657863002
- type: euclidean_pearson
value: 80.1796408157508
- type: euclidean_spearman
value: 80.42930201788549
- type: main_score
value: 81.9230633773663
task:
type: STS
- dataset:
config: default
name: MTEB T2Reranking (default)
revision: None
split: dev
type: C-MTEB/T2Reranking
metrics:
- type: map
value: 66.67836204644267
- type: mrr
value: 76.1707222383424
- type: main_score
value: 66.67836204644267
task:
type: Reranking
- dataset:
config: default
name: MTEB T2Retrieval (default)
revision: None
split: dev
type: C-MTEB/T2Retrieval
metrics:
- type: map_at_1
value: 28.015
- type: map_at_10
value: 78.281
- type: map_at_100
value: 81.89699999999999
- type: map_at_1000
value: 81.95599999999999
- type: map_at_3
value: 55.117000000000004
- type: map_at_5
value: 67.647
- type: mrr_at_1
value: 90.496
- type: mrr_at_10
value: 93.132
- type: mrr_at_100
value: 93.207
- type: mrr_at_1000
value: 93.209
- type: mrr_at_3
value: 92.714
- type: mrr_at_5
value: 93
- type: ndcg_at_1
value: 90.496
- type: ndcg_at_10
value: 85.71600000000001
- type: ndcg_at_100
value: 89.164
- type: ndcg_at_1000
value: 89.71000000000001
- type: ndcg_at_3
value: 86.876
- type: ndcg_at_5
value: 85.607
- type: precision_at_1
value: 90.496
- type: precision_at_10
value: 42.398
- type: precision_at_100
value: 5.031
- type: precision_at_1000
value: 0.516
- type: precision_at_3
value: 75.729
- type: precision_at_5
value: 63.522
- type: recall_at_1
value: 28.015
- type: recall_at_10
value: 84.83000000000001
- type: recall_at_100
value: 95.964
- type: recall_at_1000
value: 98.67399999999999
- type: recall_at_3
value: 56.898
- type: recall_at_5
value: 71.163
- type: main_score
value: 85.71600000000001
task:
type: Retrieval
- dataset:
config: default
name: MTEB TNews (default)
revision: None
split: validation
type: C-MTEB/TNews-classification
metrics:
- type: accuracy
value: 51.702999999999996
- type: accuracy_stderr
value: 0.8183526134863877
- type: f1
value: 50.35330734766769
- type: f1_stderr
value: 0.740275098366631
- type: main_score
value: 51.702999999999996
task:
type: Classification
- dataset:
config: default
name: MTEB ThuNewsClusteringP2P (default)
revision: None
split: test
type: C-MTEB/ThuNewsClusteringP2P
metrics:
- type: v_measure
value: 72.78709391223538
- type: v_measure_std
value: 1.5927130767880417
- type: main_score
value: 72.78709391223538
task:
type: Clustering
- dataset:
config: default
name: MTEB ThuNewsClusteringS2S (default)
revision: None
split: test
type: C-MTEB/ThuNewsClusteringS2S
metrics:
- type: v_measure
value: 66.80392174700211
- type: v_measure_std
value: 1.845756306548485
- type: main_score
value: 66.80392174700211
task:
type: Clustering
- dataset:
config: default
name: MTEB VideoRetrieval (default)
revision: None
split: dev
type: C-MTEB/VideoRetrieval
metrics:
- type: map_at_1
value: 65.5
- type: map_at_10
value: 75.38
- type: map_at_100
value: 75.756
- type: map_at_1000
value: 75.75800000000001
- type: map_at_3
value: 73.8
- type: map_at_5
value: 74.895
- type: mrr_at_1
value: 65.5
- type: mrr_at_10
value: 75.38
- type: mrr_at_100
value: 75.756
- type: mrr_at_1000
value: 75.75800000000001
- type: mrr_at_3
value: 73.8
- type: mrr_at_5
value: 74.895
- type: ndcg_at_1
value: 65.5
- type: ndcg_at_10
value: 79.572
- type: ndcg_at_100
value: 81.17699999999999
- type: ndcg_at_1000
value: 81.227
- type: ndcg_at_3
value: 76.44999999999999
- type: ndcg_at_5
value: 78.404
- type: precision_at_1
value: 65.5
- type: precision_at_10
value: 9.24
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 28.033
- type: precision_at_5
value: 17.76
- type: recall_at_1
value: 65.5
- type: recall_at_10
value: 92.4
- type: recall_at_100
value: 99.4
- type: recall_at_1000
value: 99.8
- type: recall_at_3
value: 84.1
- type: recall_at_5
value: 88.8
- type: main_score
value: 79.572
task:
type: Retrieval
- dataset:
config: default
name: MTEB Waimai (default)
revision: None
split: test
type: C-MTEB/waimai-classification
metrics:
- type: accuracy
value: 88.70000000000002
- type: accuracy_stderr
value: 1.1713240371477067
- type: ap
value: 73.95357766936226
- type: ap_stderr
value: 2.3258932220157638
- type: f1
value: 87.27541455081986
- type: f1_stderr
value: 1.185968184225313
- type: main_score
value: 88.70000000000002
task:
type: Classification
tags:
- mteb
Yuan-embedding-1.0
Yuan-embedding-1.0 是专门为中文文本检索任务设计的嵌入模型。 在xiaobu模型结构(bert-large结构)基础上, 采用全新的数据集构建、生成与清洗方法, 结合二阶段微调实现Retrieval任务的精度领先(Hugging Face C-MTEB榜单 [1])。 其中, 正负例样本采用源2.0-M32(Yuan2.0-M32 [2])大模型进行生成。主要工作如下:
在Hard negative sampling中,使用Rerank模型(bge-reranker-large [3])进行数据排序筛选
通过(Yuan2.0-M32大模型)迭代生成新query、corpus
采用MRL方法进行模型微调训练
Usage
pip install -U sentence-transformers==3.1.1
使用示例:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("IEIYuan/Yuan-embedding-1.0")
sentences = [
"这是一个样例-1",
"这是一个样例-2",
]
embeddings = model.encode(sentences)
similarities = model.similarity(embeddings, embeddings)
print(similarities)