gxy's picture
FEAT: add model
2374039
|
raw
history blame
2.77 kB
metadata
language:
  - zh
license: apache-2.0
tags:
  - bert
  - deberta
inference: true
widget:
  - text: 桂林是世界闻名的旅游城市,它有[MASK]江。

Erlangshen-DeBERTa-v2-320M-Chinese,one model of Fengshenbang-LM

The 320 million parameter deberta-V2 base model, using 180G Chinese data, 8 A100(80G) training for 7 days,which is a encoder-only transformer structure. Consumed totally 250M samples. our model is still training. And we will update our model once a week!

Task Description

Erlangshen-Deberta-97M-Chinese is pre-trained by bert like mask task from Deberta paper

Usage

from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
import torch

tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese', use_fast=False)
model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese')
text = '桂林是世界闻名的旅游城市,它有[MASK]江。'
fillmask_pipe = FillMaskPipeline(model, tokenizer, device=0)
print(fillmask_pipe(text, top_k=10))

Finetune

We present the dev results on some tasks(dev set).

Model AFQMC TNEWS1.1 IFLYTEK OCNLI CMNLI
RoBERTa-base 0.7406 0.575 0.6036 0.743 0.7973
RoBERTa-large 0.7488 0.5879 0.6152 0.777 0.814
IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese 0.7405 0.571 0.5977 0.7568 0.807
IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese 0.7498 0.5817 0.6042 0.8022 0.8301
IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese 0.7549 0.5873 0.6177 0.8012 0.8389

Citation

If you find the resource is useful, please cite the following website in your paper.

@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2022},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}