|
--- |
|
language: |
|
- ko |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: 이 회사는 러시아의 톰스크 지역에 있는 베니어 공장에 기계를 납품하기로 되어 있었다. |
|
example_title: example01 |
|
- text: 새로운 생산공장으로 인해 회사는 예상되는 수요 증가를 충족시킬 수 있는 능력을 증가시키고 원자재 사용을 개선하여 생산 수익성을 높일 |
|
것이다. |
|
example_title: example02 |
|
- text: 국제 전자산업 회사인 엘코텍은 탈린 공장에서 수십 명의 직원을 해고했으며, 이전의 해고와는 달리 회사는 사무직 직원 수를 줄였다고 일간 |
|
포스티메스가 보도했다. |
|
example_title: example03 |
|
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment |
|
model-index: |
|
- name: ko-finance_news_classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ko-finance_news_classifier |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4474 |
|
- Accuracy: 0.8423 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 243 | 1.0782 | 0.8010 | |
|
| No log | 2.0 | 486 | 1.0328 | 0.8381 | |
|
| 0.0766 | 3.0 | 729 | 1.2348 | 0.8330 | |
|
| 0.0766 | 4.0 | 972 | 1.3915 | 0.8052 | |
|
| 0.046 | 5.0 | 1215 | 1.2995 | 0.8474 | |
|
| 0.046 | 6.0 | 1458 | 1.2926 | 0.8361 | |
|
| 0.0512 | 7.0 | 1701 | 1.2889 | 0.8330 | |
|
| 0.0512 | 8.0 | 1944 | 1.3107 | 0.8392 | |
|
| 0.0415 | 9.0 | 2187 | 1.4514 | 0.8309 | |
|
| 0.0415 | 10.0 | 2430 | 1.2869 | 0.8381 | |
|
| 0.0279 | 11.0 | 2673 | 1.2874 | 0.8526 | |
|
| 0.0279 | 12.0 | 2916 | 1.4731 | 0.8423 | |
|
| 0.0126 | 13.0 | 3159 | 1.3956 | 0.8443 | |
|
| 0.0126 | 14.0 | 3402 | 1.4211 | 0.8454 | |
|
| 0.0101 | 15.0 | 3645 | 1.3686 | 0.8474 | |
|
| 0.0101 | 16.0 | 3888 | 1.4412 | 0.8423 | |
|
| 0.0114 | 17.0 | 4131 | 1.4376 | 0.8423 | |
|
| 0.0114 | 18.0 | 4374 | 1.4566 | 0.8423 | |
|
| 0.0055 | 19.0 | 4617 | 1.4439 | 0.8443 | |
|
| 0.0055 | 20.0 | 4860 | 1.4474 | 0.8423 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|