File size: 3,421 Bytes
b785728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: mit
library_name: pytorch
tags:
- faster-rcnn
- object-detection
- computer-vision
- pytorch
- kitti
- autonomous-driving
- from-scratch
pipeline_tag: object-detection
datasets:
- kitti
widget:
- src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bounding-boxes-sample.png
  example_title: "Sample Image"
model-index:
- name: faster-rcnn-kitti-vanilla
  results:
  - task:
      type: object-detection
    dataset:
      type: kitti
      name: KITTI Object Detection
    metrics:
    - type: mean_average_precision
      name: mAP
      value: "TBD"
---

# Faster R-CNN - KITTI Object Detection Vanilla

Faster R-CNN model trained from scratch on KITTI dataset for autonomous driving object detection.

## Model Details

- **Model Type**: Faster R-CNN Object Detection
- **Dataset**: KITTI Object Detection
- **Training Method**: trained from scratch
- **Framework**: PyTorch
- **Task**: Object Detection

## Dataset Information

This model was trained on the **KITTI Object Detection** dataset, which contains the following object classes:

car, pedestrian, cyclist

### Dataset-specific Details:

**KITTI Object Detection Dataset:**
- Real-world autonomous driving dataset
- Contains stereo imagery from vehicle-mounted cameras
- Focus on cars, pedestrians, and cyclists
- Challenging scenarios with varying lighting and weather conditions

## Usage

This model can be used with PyTorch and common object detection frameworks:

```python
import torch
import torchvision.transforms as transforms
from PIL import Image

# Load the model (example using torchvision)
model = torch.load('path/to/model.pth')
model.eval()

# Prepare your image
transform = transforms.Compose([
    transforms.ToTensor(),
])

image = Image.open('path/to/image.jpg')
image_tensor = transform(image).unsqueeze(0)

# Run inference
with torch.no_grad():
    predictions = model(image_tensor)

# Process results
boxes = predictions[0]['boxes']
scores = predictions[0]['scores']
labels = predictions[0]['labels']
```

## Model Performance

This model was trained from scratch on the KITTI Object Detection dataset using Faster R-CNN architecture.

## Architecture

**Faster R-CNN** (Region-based Convolutional Neural Network) is a two-stage object detection framework:

1. **Region Proposal Network (RPN)**: Generates object proposals
2. **Fast R-CNN detector**: Classifies proposals and refines bounding box coordinates

Key advantages:
- High accuracy object detection
- Precise localization
- Good performance on small objects
- Well-established architecture with extensive research backing

## Intended Use

- **Primary Use**: Object detection in autonomous driving scenarios
- **Suitable for**: Research, development, and deployment of object detection systems
- **Limitations**: Performance may vary on images significantly different from the training distribution

## Citation

If you use this model, please cite:

```bibtex
@article{ren2015faster,
  title={Faster r-cnn: Towards real-time object detection with region proposal networks},
  author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
  journal={Advances in neural information processing systems},
  volume={28},
  year={2015}
}
```

## License

This model is released under the MIT License.

## Keywords

Faster R-CNN, Object Detection, Computer Vision, KITTI, Autonomous Driving, Deep Learning, Two-Stage Detection