HugoHE commited on
Commit
b785728
·
verified ·
1 Parent(s): a93a367

Add comprehensive model card for faster-rcnn-kitti-vanilla

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: pytorch
4
+ tags:
5
+ - faster-rcnn
6
+ - object-detection
7
+ - computer-vision
8
+ - pytorch
9
+ - kitti
10
+ - autonomous-driving
11
+ - from-scratch
12
+ pipeline_tag: object-detection
13
+ datasets:
14
+ - kitti
15
+ widget:
16
+ - src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bounding-boxes-sample.png
17
+ example_title: "Sample Image"
18
+ model-index:
19
+ - name: faster-rcnn-kitti-vanilla
20
+ results:
21
+ - task:
22
+ type: object-detection
23
+ dataset:
24
+ type: kitti
25
+ name: KITTI Object Detection
26
+ metrics:
27
+ - type: mean_average_precision
28
+ name: mAP
29
+ value: "TBD"
30
+ ---
31
+
32
+ # Faster R-CNN - KITTI Object Detection Vanilla
33
+
34
+ Faster R-CNN model trained from scratch on KITTI dataset for autonomous driving object detection.
35
+
36
+ ## Model Details
37
+
38
+ - **Model Type**: Faster R-CNN Object Detection
39
+ - **Dataset**: KITTI Object Detection
40
+ - **Training Method**: trained from scratch
41
+ - **Framework**: PyTorch
42
+ - **Task**: Object Detection
43
+
44
+ ## Dataset Information
45
+
46
+ This model was trained on the **KITTI Object Detection** dataset, which contains the following object classes:
47
+
48
+ car, pedestrian, cyclist
49
+
50
+ ### Dataset-specific Details:
51
+
52
+ **KITTI Object Detection Dataset:**
53
+ - Real-world autonomous driving dataset
54
+ - Contains stereo imagery from vehicle-mounted cameras
55
+ - Focus on cars, pedestrians, and cyclists
56
+ - Challenging scenarios with varying lighting and weather conditions
57
+
58
+ ## Usage
59
+
60
+ This model can be used with PyTorch and common object detection frameworks:
61
+
62
+ ```python
63
+ import torch
64
+ import torchvision.transforms as transforms
65
+ from PIL import Image
66
+
67
+ # Load the model (example using torchvision)
68
+ model = torch.load('path/to/model.pth')
69
+ model.eval()
70
+
71
+ # Prepare your image
72
+ transform = transforms.Compose([
73
+ transforms.ToTensor(),
74
+ ])
75
+
76
+ image = Image.open('path/to/image.jpg')
77
+ image_tensor = transform(image).unsqueeze(0)
78
+
79
+ # Run inference
80
+ with torch.no_grad():
81
+ predictions = model(image_tensor)
82
+
83
+ # Process results
84
+ boxes = predictions[0]['boxes']
85
+ scores = predictions[0]['scores']
86
+ labels = predictions[0]['labels']
87
+ ```
88
+
89
+ ## Model Performance
90
+
91
+ This model was trained from scratch on the KITTI Object Detection dataset using Faster R-CNN architecture.
92
+
93
+ ## Architecture
94
+
95
+ **Faster R-CNN** (Region-based Convolutional Neural Network) is a two-stage object detection framework:
96
+
97
+ 1. **Region Proposal Network (RPN)**: Generates object proposals
98
+ 2. **Fast R-CNN detector**: Classifies proposals and refines bounding box coordinates
99
+
100
+ Key advantages:
101
+ - High accuracy object detection
102
+ - Precise localization
103
+ - Good performance on small objects
104
+ - Well-established architecture with extensive research backing
105
+
106
+ ## Intended Use
107
+
108
+ - **Primary Use**: Object detection in autonomous driving scenarios
109
+ - **Suitable for**: Research, development, and deployment of object detection systems
110
+ - **Limitations**: Performance may vary on images significantly different from the training distribution
111
+
112
+ ## Citation
113
+
114
+ If you use this model, please cite:
115
+
116
+ ```bibtex
117
+ @article{ren2015faster,
118
+ title={Faster r-cnn: Towards real-time object detection with region proposal networks},
119
+ author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
120
+ journal={Advances in neural information processing systems},
121
+ volume={28},
122
+ year={2015}
123
+ }
124
+ ```
125
+
126
+ ## License
127
+
128
+ This model is released under the MIT License.
129
+
130
+ ## Keywords
131
+
132
+ Faster R-CNN, Object Detection, Computer Vision, KITTI, Autonomous Driving, Deep Learning, Two-Stage Detection