library_name: transformers
license: apache-2.0
language:
- en
- fr
- es
- it
- pt
- zh
- ar
- ru
SmolLM3
Table of Contents
Model Summary
SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.
The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).
Key features
- Instruct model optimized for hybrid reasoning
- Fully open model: open weights + full training details including public data mixture and training configs
- Long context: Trained on 64k context and suppots up to 128k tokens using YARN extrapolation
- Multilingual: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)
For more details refer to our blog post: https://hf.co/blog/smollm3
How to use
The modeling code for SmolLM3 is available in transformers v4.53.0
, so make sure to upgrade your transformers version. You can also load the model with the latest vllm
which uses transformers as a backend.
pip install -U transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "HuggingFaceTB/SmolLM3-3B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
).to(device)
# prepare the model input
prompt = "Give me a brief explanation of gravity in simple terms."
messages_think = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
We recommend setting
temperature=0.6
andtop_p=0.95
in the sampling parameters.
Long context processing
The current config.json
is set for context length up to 65,536 tokens. To handle longer inputs (128k or 256k), we utilize YaRN you can change the max_position_embeddings
and rope_scaling` to:
{
...,
"rope_scaling": {
"factor": 2.0, #2x65536=131 072
"original_max_position_embeddings": 65536,
"type": "yarn"
}
}
Enabling and Disabling Extended Thinking Mode
We enable extended thinking by default, so the example above generates the output with a reasoning trace. For choosing between enabling, you can provide the /think
and /no_think
flags through the system prompt as shown in the snippet below for extended thinking disabled. The code for generating the response with extended thinking would be the same except that the system prompt should have /think
instead of /no_think
.
prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
{"role": "system", "content": "/no_think"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
We also provide the option of specifying the whether to use extended thinking through the enable_thinking
kwarg as in the example below. You do not need to set the /no_think
or /think
flags through the system prompt if using the kwarg, but keep in mind that the flag in the system prompt overwrites the setting in the kwarg.
prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
Agentic Usage
SmolLM3 supports tool calling! Just pass your list of tools:
- Under the argument
xml_tools
for standard tool-calling: these tools will be called as JSON blobs within XML tags, like<tool_call>{"name": "get_weather", "arguments": {"city": "Copenhagen"}}</tool_call>
- Or under
python_tools
: then the model will call tools like python functions in a<code>
snippet, like<code>get_weather(city="Copenhagen")</code>
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM3-3B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
tools = [
{
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
]
messages = [
{
"role": "user",
"content": "Hello! How is the weather today in Copenhagen?"
}
]
inputs = tokenizer.apply_chat_template(
messages,
enable_thinking=False, # True works as well, your choice!
xml_tools=tools,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
Using Custom System Instructions.
You can specify custom instruction through the system prompt while controlling whether to use extended thinking. For example, the snippet below shows how to make the model speak like a pirate while enabling extended thinking.
prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
{"role": "system", "content": "Speak like a pirate./think"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
For local inference, you can use llama.cpp
, ONNX
, MLX
and MLC
. You can find quantized checkpoints in this collection (https://huggingface.co/collections/HuggingFaceTB/smollm3-686d33c1fdffe8e635317e23)
vLLM and SGLang
You can use vLLM and SGLang to deploy the model in an API compatible with OpenAI format.
SGLang
python -m sglang.launch_server --model-path HuggingFaceTB/SmolLM3-3B
vLLM
vllm serve HuggingFaceTB/SmolLM3-3B
Setting chat_template_kwargs
You can specify chat_template_kwargs
such as enable_thinking
and xml_tools
to a deployed model by passing the chat_template_kwargs
parameter in the API request.
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "HuggingFaceTB/SmolLM3-3B",
"messages": [
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}
],
"temperature": 0.6,
"top_p": 0.95,
"max_tokens": 16384,
"chat_template_kwargs": {"enable_thinking": false}
}'
Evaluation
In this section, we report the evaluation results of SmolLM3 model. All evaluations are zero-shot unless stated otherwise, and we use lighteval to run them.
We highlight the best score in bold and underline the second-best score.
Instruction Model
No Extended Thinking
Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.
Category | Metric | SmoLLM3-3B | Qwen2.5-3B | Llama3.1-3B | Qwen3-1.7B | Qwen3-4B |
---|---|---|---|---|---|---|
High school math competition | AIME 2025 | 9.3 | 2.9 | 0.3 | 8.0 | 17.1 |
Math problem-solving | GSM-Plus | 72.8 | 74.1 | 59.2 | 68.3 | 82.1 |
Competitive programming | LiveCodeBench v4 | 15.2 | 10.5 | 3.4 | 15.0 | 24.9 |
Graduate-level reasoning | GPQA Diamond | 35.7 | 32.2 | 29.4 | 31.8 | 44.4 |
Instruction following | IFEval | 76.7 | 65.6 | 71.6 | 74.0 | 68.9 |
Alignment | MixEval Hard | 26.9 | 27.6 | 24.9 | 24.3 | 31.6 |
Tool Calling | BFCL | 92.3 | - | 92.3 * | 89.5 | 95.0 |
Multilingual Q&A | Global MMLU | 53.5 | 50.54 | 46.8 | 49.5 | 65.1 |
(*): this is a tool calling finetune
Extended Thinking
Evaluation results in reasoning mode for SmolLM3 and Qwen3 models:
Category | Metric | SmoLLM3-3B | Qwen3-1.7B | Qwen3-4B |
---|---|---|---|---|
High school math competition | AIME 2025 | 36.7 | 30.7 | 58.8 |
Math problem-solving | GSM-Plus | 83.4 | 79.4 | 88.2 |
Competitive programming | LiveCodeBench v4 | 30.0 | 34.4 | 52.9 |
Graduate-level reasoning | GPQA Diamond | 41.7 | 39.9 | 55.3 |
Instruction following | IFEval | 71.2 | 74.2 | 85.4 |
Alignment | MixEval Hard | 30.8 | 33.9 | 38.0 |
Tool Calling | BFCL | 88.8 | 88.8 | 95.5 |
Multilingual Q&A | Global MMLU | 64.1 | 62.3 | 73.3 |
Base Pre-Trained Model
English benchmarks
Note: All evaluations are zero-shot unless stated otherwise. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.
Category | Metric | SmolLM3-3B | Qwen2.5-3B | Llama3-3.2B | Qwen3-1.7B-Base | Qwen3-4B-Base |
---|---|---|---|---|---|---|
Reasoning & Commonsense | HellaSwag | 76.15 | 74.19 | 75.52 | 60.52 | 74.37 |
ARC-CF (Average) | 65.61 | 59.81 | 58.58 | 55.88 | 62.11 | |
Winogrande | 58.88 | 61.41 | 58.72 | 57.06 | 59.59 | |
CommonsenseQA | 55.28 | 49.14 | 60.60 | 48.98 | 52.99 | |
Knowledge & Understanding | MMLU-CF (Average) | 44.13 | 42.93 | 41.32 | 39.11 | 47.65 |
MMLU Pro CF | 19.61 | 16.66 | 16.42 | 18.04 | 24.92 | |
MMLU Pro MCF | 32.70 | 31.32 | 25.07 | 30.39 | 41.07 | |
PIQA | 78.89 | 78.35 | 78.51 | 75.35 | 77.58 | |
OpenBookQA | 40.60 | 40.20 | 42.00 | 36.40 | 42.40 | |
BoolQ | 78.99 | 73.61 | 75.33 | 74.46 | 74.28 | |
Math & Code | ||||||
Coding & math | HumanEval+ | 30.48 | 34.14 | 25.00 | 43.29 | 54.87 |
MBPP+ | 52.91 | 52.11 | 38.88 | 59.25 | 63.75 | |
MATH (4-shot) | 46.10 | 40.10 | 7.44 | 41.64 | 51.20 | |
GSM8k (5-shot) | 67.63 | 70.13 | 25.92 | 65.88 | 74.14 | |
Long context | ||||||
Ruler 32k | 76.35 | 75.93 | 77.58 | 70.63 | 83.98 | |
Ruler 64k | 67.85 | 64.90 | 72.93 | 57.18 | 60.29 | |
Ruler 128k | 61.03 | 62.23 | 71.30 | 43.03 | 47.23 |
Multilingual benchmarks
Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
---|---|---|---|---|---|---|
Main supported languages | ||||||
French | MLMM Hellaswag | 63.94 | 57.47 | 57.66 | 51.26 | 61.00 |
Belebele | 51.00 | 51.55 | 49.22 | 49.44 | 55.00 | |
Global MMLU (CF) | 38.37 | 34.22 | 33.71 | 34.94 | 41.80 | |
Flores-200 (5-shot) | 62.85 | 61.38 | 62.89<u/u> | 58.68 | 65.76 | |
Spanish | MLMM Hellaswag | 65.85 | 58.25 | 59.39 | 52.40 | 61.85 |
Belebele | 47.00 | 48.88 | 47.00 | 47.56 | 50.33 | |
Global MMLU (CF) | 38.51 | 35.84 | 35.60 | 34.79 | 41.22 | |
Flores-200 (5-shot) | 48.25 | 50.00 | 44.45 | 46.93 | 50.16 | |
German | MLMM Hellaswag | 59.56 | 49.99 | 53.19 | 46.10 | 56.43 |
Belebele | 48.44 | 47.88 | 46.22 | 48.00 | 53.44 | |
Global MMLU (CF) | 35.10 | 33.19 | 32.60 | 32.73 | 38.70 | |
Flores-200 (5-shot) | 56.60 | 50.63 | 54.95 | 52.58 | 50.48 | |
Italian | MLMM Hellaswag | 62.49 | 53.21 | 54.96 | 48.72 | 58.76 |
Belebele | 46.44 | 44.77 | 43.88 | 44.00 | 48.78 | |
Global MMLU (CF) | 36.99 | 33.91 | 32.79 | 35.37 | 39.26 | |
Flores-200 (5-shot) | 52.65 | 54.87 | 48.83 | 48.37 | 49.11 | |
Portuguese | MLMM Hellaswag | 63.22 | 57.38 | 56.84 | 50.73 | 59.89 |
Belebele | 47.67 | 49.22 | 45.00 | 44.00 | 50.00 | |
Global MMLU (CF) | 36.88 | 34.72 | 33.05 | 35.26 | 40.66 | |
Flores-200 (5-shot) | 60.93 | 57.68 | 54.28 | 56.58 | 63.43 |
The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.
Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
---|---|---|---|---|---|---|
Other supported languages | ||||||
Arabic | Belebele | 40.22 | 44.22 | 45.33 | 42.33 | 51.78 |
Global MMLU (CF) | 28.57 | 28.81 | 27.67 | 29.37 | 31.85 | |
Flores-200 (5-shot) | 40.22 | 39.44 | 44.43 | 35.82 | 39.76 | |
Chinese | Belebele | 43.78 | 44.56 | 49.56 | 48.78 | 53.22 |
Global MMLU (CF) | 36.16 | 33.79 | 39.57 | 38.56 | 44.55 | |
Flores-200 (5-shot) | 29.17 | 33.21 | 31.89 | 25.70 | 32.50 | |
Russian | Belebele | 47.44 | 45.89 | 47.44 | 45.22 | 51.44 |
Global MMLU (CF) | 36.51 | 32.47 | 34.52 | 34.83 | 38.80 | |
Flores-200 (5-shot) | 47.13 | 48.74 | 50.74 | 54.70 | 60.53 |
Training
Model
- Architecture: Transformer decoder
- Pretraining tokens: 11T
- Precision: bfloat16
Software & hardware
- GPUs: 384 H100
- Training Framework: nanotron
- Data processing framework: datatrove
- Evaluation framework: lighteval
- Post-training Framework: TRL
Open resources
Here is an infographic with all the training details
- The datasets used for pretraining can be found in this collection and those used in mid-training and post-training will be uploaded later
- The training and evaluation configs and code can be found in the huggingface/smollm repository.
Limitations
SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.