Setting compute_metrics in Trainer() leads to AttributeError
Using the code in the tutorial colab, setting a custom compute_metrics in the Trainer() leads to AttributeError: 'DynamicCache' object has no attribute 'detach'.
Currently on transformers Version: 4.41.0.dev0
def custom_metrics(eval_preds):
exit(0)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset, # You can also evaluate (loss) on the eval set, note that it will incur some additional GPU memory
compute_metrics = custom_metrics
)
trainer.evaluate()
The rest of the code is the same as in the colab.
File ~/miniconda3/lib/python3.11/site-packages/transformers/trainer.py:3513, in Trainer.evaluate(self, eval_dataset, ignore_keys, metric_key_prefix)
3510 start_time = time.time()
3512 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
-> 3513 output = eval_loop(
3514 eval_dataloader,
3515 description="Evaluation",
3516 # No point gathering the predictions if there are no metrics, otherwise we defer to
3517 # self.args.prediction_loss_only
3518 prediction_loss_only=True if self.compute_metrics is None else None,
3519 ignore_keys=ignore_keys,
3520 metric_key_prefix=metric_key_prefix,
3521 )
3523 total_batch_size = self.args.eval_batch_size * self.args.world_size
3524 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
File ~/miniconda3/lib/python3.11/site-packages/transformers/trainer.py:3696, in Trainer.evaluation_loop(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)
3693 batch_size = observed_batch_size
3695 # Prediction step
-> 3696 loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
3697 main_input_name = getattr(self.model, "main_input_name", "input_ids")
3698 inputs_decode = self._prepare_input(inputs[main_input_name]) if args.include_inputs_for_metrics else None
File ~/miniconda3/lib/python3.11/site-packages/transformers/trainer.py:3904, in Trainer.prediction_step(self, model, inputs, prediction_loss_only, ignore_keys)
3901 if prediction_loss_only:
3902 return (loss, None, None)
-> 3904 logits = nested_detach(logits)
3905 if len(logits) == 1:
3906 logits = logits[0]
File ~/miniconda3/lib/python3.11/site-packages/transformers/trainer_pt_utils.py:190, in nested_detach(tensors)
188 "Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."
189 if isinstance(tensors, (list, tuple)):
--> 190 return type(tensors)(nested_detach(t) for t in tensors)
191 elif isinstance(tensors, Mapping):
192 return type(tensors)({k: nested_detach(t) for k, t in tensors.items()})
File ~/miniconda3/lib/python3.11/site-packages/transformers/trainer_pt_utils.py:190, in <genexpr>(.0)
188 "Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."
189 if isinstance(tensors, (list, tuple)):
--> 190 return type(tensors)(nested_detach(t) for t in tensors)
191 elif isinstance(tensors, Mapping):
192 return type(tensors)({k: nested_detach(t) for k, t in tensors.items()})
File ~/miniconda3/lib/python3.11/site-packages/transformers/trainer_pt_utils.py:193, in nested_detach(tensors)
191 elif isinstance(tensors, Mapping):
192 return type(tensors)({k: nested_detach(t) for k, t in tensors.items()})
--> 193 return tensors.detach()
AttributeError: 'DynamicCache' object has no attribute 'detach'
hi
@Eyel
that looks like an issue with HF Transformers (and more specifically the dynamic cache used in generate
).
can you open an issue there?
i don't think that's specific to idefics2 and that will help for discovery
Hey @VictorSanh , thanks I looked into it and it seems to be an issue when the model's output's past_key_values is an empty DynamicCache.
I'll open an issue with HF Transformers.
thanks! for reference, if anyone encounters the same issue, Niels proposed a solution in this issue: https://github.com/huggingface/transformers/issues/30631