File size: 1,438 Bytes
b261937 b7fd1fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language: en
license: mit
tags:
- sentiment-analysis
- imdb
- bert
- transformers
- text-classification
model-index:
- name: sentiment-bert-imdb
results:
- task:
type: text-classification
name: Sentiment Analysis
dataset:
name: IMDB Movie Reviews
type: imdb
metrics:
- type: accuracy
value: 0.93 # Replace with actual score if available
---
# Sentiment-BERT-IMDB
A BERT-based model fine-tuned on the IMDB movie reviews dataset for **binary sentiment classification** (positive/negative). This model is intended for quick deployment and practical use in applications like review analysis, recommendation systems, and content moderation.
## Model Details
- **Architecture**: `bert-base-uncased`
- **Task**: Sentiment classification (positive vs. negative)
- **Dataset**: [IMDB](https://ai.stanford.edu/~amaas/data/sentiment/)
- **Classes**: `positive`, `negative`
- **Tokenizer**: `bert-base-uncased`
## How to Use
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model = AutoModelForSequenceClassification.from_pretrained("HrishikeshDeore/sentiment-bert-imdb")
tokenizer = AutoTokenizer.from_pretrained("HrishikeshDeore/sentiment-bert-imdb")
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
result = nlp("This movie was absolutely fantastic!")
print(result)
|