HrishikeshDeore commited on
Commit
b7fd1fa
·
verified ·
1 Parent(s): b261937

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -9
README.md CHANGED
@@ -1,10 +1,46 @@
1
  ---
2
- license: apache-2.0
3
- datasets:
4
- - stanfordnlp/imdb
5
- language:
6
- - en
7
- base_model:
8
- - google-bert/bert-base-uncased
9
- pipeline_tag: text-classification
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - sentiment-analysis
6
+ - imdb
7
+ - bert
8
+ - transformers
9
+ - text-classification
10
+ model-index:
11
+ - name: sentiment-bert-imdb
12
+ results:
13
+ - task:
14
+ type: text-classification
15
+ name: Sentiment Analysis
16
+ dataset:
17
+ name: IMDB Movie Reviews
18
+ type: imdb
19
+ metrics:
20
+ - type: accuracy
21
+ value: 0.93 # Replace with actual score if available
22
+ ---
23
+
24
+ # Sentiment-BERT-IMDB
25
+
26
+ A BERT-based model fine-tuned on the IMDB movie reviews dataset for **binary sentiment classification** (positive/negative). This model is intended for quick deployment and practical use in applications like review analysis, recommendation systems, and content moderation.
27
+
28
+ ## Model Details
29
+
30
+ - **Architecture**: `bert-base-uncased`
31
+ - **Task**: Sentiment classification (positive vs. negative)
32
+ - **Dataset**: [IMDB](https://ai.stanford.edu/~amaas/data/sentiment/)
33
+ - **Classes**: `positive`, `negative`
34
+ - **Tokenizer**: `bert-base-uncased`
35
+
36
+ ## How to Use
37
+
38
+ ```python
39
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
40
+
41
+ model = AutoModelForSequenceClassification.from_pretrained("HrishikeshDeore/sentiment-bert-imdb")
42
+ tokenizer = AutoTokenizer.from_pretrained("HrishikeshDeore/sentiment-bert-imdb")
43
+
44
+ nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
45
+ result = nlp("This movie was absolutely fantastic!")
46
+ print(result)