Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,46 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- sentiment-analysis
|
6 |
+
- imdb
|
7 |
+
- bert
|
8 |
+
- transformers
|
9 |
+
- text-classification
|
10 |
+
model-index:
|
11 |
+
- name: sentiment-bert-imdb
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
type: text-classification
|
15 |
+
name: Sentiment Analysis
|
16 |
+
dataset:
|
17 |
+
name: IMDB Movie Reviews
|
18 |
+
type: imdb
|
19 |
+
metrics:
|
20 |
+
- type: accuracy
|
21 |
+
value: 0.93 # Replace with actual score if available
|
22 |
+
---
|
23 |
+
|
24 |
+
# Sentiment-BERT-IMDB
|
25 |
+
|
26 |
+
A BERT-based model fine-tuned on the IMDB movie reviews dataset for **binary sentiment classification** (positive/negative). This model is intended for quick deployment and practical use in applications like review analysis, recommendation systems, and content moderation.
|
27 |
+
|
28 |
+
## Model Details
|
29 |
+
|
30 |
+
- **Architecture**: `bert-base-uncased`
|
31 |
+
- **Task**: Sentiment classification (positive vs. negative)
|
32 |
+
- **Dataset**: [IMDB](https://ai.stanford.edu/~amaas/data/sentiment/)
|
33 |
+
- **Classes**: `positive`, `negative`
|
34 |
+
- **Tokenizer**: `bert-base-uncased`
|
35 |
+
|
36 |
+
## How to Use
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
40 |
+
|
41 |
+
model = AutoModelForSequenceClassification.from_pretrained("HrishikeshDeore/sentiment-bert-imdb")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("HrishikeshDeore/sentiment-bert-imdb")
|
43 |
+
|
44 |
+
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
45 |
+
result = nlp("This movie was absolutely fantastic!")
|
46 |
+
print(result)
|