Embformer-MiniMind-0.1B

A 0.1B sft model of the reasearch note Embformer: An Embedding-Weight-Only Transformer Architecture, which trained on jingyaogong/minimind_dataset.

Run commands in the terminal:

pip install "transformers @ git+https://github.com/huggingface/transformers.git@cb0f604"

The following contains a code snippet illustrating how to use the model generate content based on given inputs.

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "HighCWu/Embformer-MiniMind-0.1B"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    trust_remote_code=True,
    cache_dir=".cache"
)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True,
    cache_dir=".cache"
)

# prepare the model input
prompt = "请为我讲解“大语言模型”这个概念。"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    input_ids=model_inputs['input_ids'],
    attention_mask=model_inputs['attention_mask'],
    max_new_tokens=8192
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

print(tokenizer.decode(output_ids, skip_special_tokens=True))
Downloads last month
59
Safetensors
Model size
123M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for HighCWu/Embformer-MiniMind-0.1B

Finetuned
(1)
this model
Finetunes
1 model

Dataset used to train HighCWu/Embformer-MiniMind-0.1B

Space using HighCWu/Embformer-MiniMind-0.1B 1

Collection including HighCWu/Embformer-MiniMind-0.1B