|
--- |
|
language: |
|
- ar |
|
metrics: |
|
- Accuracy |
|
- F1_score |
|
- BLEU |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- t5 |
|
- text2text-generation |
|
- seq2seq |
|
- Classification and Generation |
|
- Classification |
|
- Generation |
|
- ArabicT5 |
|
- Text Classification |
|
- Text2Text Generation |
|
widget: |
|
- example_title: "الرياضة" |
|
- text: > |
|
خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس |
|
--- |
|
|
|
# ArabicT5: Classification and Generation of Arabic News |
|
- The model is under trial |
|
|
|
# The number in the generated text represents the category of the news, as shown below: |
|
category_mapping = { |
|
|
|
'Political':1, |
|
'Economy':2, |
|
'Health':3, |
|
'Sport':4, |
|
'Culture':5, |
|
'Technology':6, |
|
'Art':7, |
|
'Accidents':8 |
|
} |
|
|
|
|
|
# Example usage |
|
```python |
|
|
|
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline |
|
|
|
model_name="Hezam/ArabicT5-news-classification-generation-45GB-base" |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer) |
|
|
|
text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس" |
|
|
|
output= generation_pipeline(text, |
|
num_beams=10, |
|
max_length=512, |
|
top_p=0.9, |
|
repetition_penalty = 3.0, |
|
no_repeat_ngram_size = 3)[0]["generated_text"] |
|
|
|
print(output) |
|
|