metadata
library_name: transformers
license: apache-2.0
base_model: Heralax/philosophy-llm-mistral-pretrain
tags:
- generated_from_trainer
model-index:
- name: philosophy-hardcore-pretraining
results: []
See axolotl config
axolotl version: 0.4.1
# This is an axolotl config that allowed creation of a model knowledgeable about hawaii.
# Replace the dataset paths under `datasets:` with your own
# If you want a reference point of what kind of data was fed into this model, check out hawaiitoolkit https://github.com/e-p-armstrong/hawaiitoolkit.git
# Rent a GPU with a compute provider like Vast.ai or Runpod
# (Make sure it is using the axolotl docker image --- winglian/axolotl:main-latest)
# Copy this file over to the rented instance, in the /workspace/axolotl directory
# If running on a single-GPU setup, you must run:
# conda install -c conda-forge mpi4py mpich
# Then run this command from the /workspace/axolotl directory:
# accelerate launch --use_deepspeed -m axolotl.cli.train axolotl_config_hawaii_llama3_Jun_9_2024.yaml
# If using GaLore, do not use deepspeed
# (to copy files over to a rented GPU instance, you'll have to use SSH to Secure CoPy files over from your machine to the rented one. This is what such a command might look like, adapt it to your needs)
# scp -P 40001 -r ./ [email protected]:/workspace/axolotl/
# TODO to properly make this great, MAKE VARIED SYSTEM PROMPTS FOR ALL THINGS IN THE hawaii DATASET.
# And make automated code to produce it so that I built it for this project and not the other one.
# OK, now I am truly back to working on the efficiency problem.
base_model: Heralax/philosophy-llm-mistral-pretrain
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: philosophy_qa_normal.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: philosophy_qa_open-ended.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: philosophy_qa_negative.jsonl
ds_type: json
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./philosophy-hardcore-pretraining
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
shuffle_merged_datasets: true
wandb_project: mistral-philosophy
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 6
micro_batch_size: 2
eval_batch_size: 1
num_epochs: 6
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000020
weight_decay: 0
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
chat_template: chatml
warmup_ratio: 0.5
auto_resume_from_checkpoints: false
#warmup_ratio: 0.5
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 3
debug:
deepspeed: deepspeed_configs/zero2.json
special_tokens:
pad_token: "<|end_of_text|>"
philosophy-hardcore-pretraining
This model is a fine-tuned version of Heralax/philosophy-llm-mistral-pretrain on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 6
- total_train_batch_size: 72
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 136
- num_epochs: 6
Training results
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1