metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: EMOTION-AI
results: []
EMOTION-AI
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4188
- Accuracy: 0.5669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 272 | 1.4966 | 0.5462 |
6.0068 | 1.9945 | 542 | 1.4188 | 0.5669 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0