|
--- |
|
base_model: Qwen/Qwen2.5-0.5B-Instruct |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
tags: |
|
- chat |
|
- openvino |
|
- openvino-export |
|
--- |
|
|
|
This model was converted to OpenVINO from [`Qwen/Qwen2.5-0.5B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) using [optimum-intel](https://github.com/huggingface/optimum-intel) |
|
via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space. |
|
|
|
First make sure you have optimum-intel installed: |
|
|
|
```bash |
|
pip install optimum[openvino] |
|
``` |
|
|
|
To load your model you can do as follows: |
|
In huggingface space |
|
app.py |
|
```python |
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from optimum.intel import OVModelForCausalLM |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
# 載入模型和標記器 |
|
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino" |
|
model = OVModelForCausalLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# 建立生成管道 |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def respond(message, history): |
|
# 將當前訊息與歷史訊息合併 |
|
#input_text = message if not history else history[-1]["content"] + " " + message |
|
input_text = message |
|
# 獲取模型的回應 |
|
response = pipe(input_text, max_length=500, truncation=True, num_return_sequences=1) |
|
reply = response[0]['generated_text'] |
|
|
|
# 返回新的消息格式 |
|
print(f"Message: {message}") |
|
print(f"Reply: {reply}") |
|
return reply |
|
|
|
# 設定 Gradio 的聊天界面 |
|
demo = gr.ChatInterface(fn=respond, title="Chat with Qwen(通義千問) 2.5-0.5B", description="與 HelloSun/Qwen2.5-0.5B-Instruct-openvino 聊天!", type='messages') |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
``` |
|
requirements.txt |
|
```requirements.txt |
|
huggingface_hub==0.25.2 |
|
optimum[openvino] |
|
``` |
|
|
|
|
|
|
|
|