test

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6886
  • Accuracy: 0.8143
  • F1: [0.92816572 0.56028369 0.1 0.2633452 ]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 37 0.4891 0.8235 [0.91702786 0.33333333 0. 0.10837438]
No log 2.0 74 0.4762 0.8321 [0.93139159 0.48466258 0. 0.22857143]
No log 3.0 111 0.5084 0.8208 [0.92995725 0.44887781 0. 0.19266055]
No log 4.0 148 0.5519 0.8105 [0.92421691 0.44444444 0.06557377 0.30769231]
No log 5.0 185 0.5805 0.8294 [0.93531353 0.52336449 0.09345794 0.27131783]
No log 6.0 222 0.6778 0.7955 [0.91344509 0.55305466 0.15463918 0.29166667]
No log 7.0 259 0.6407 0.8213 [0.93298292 0.51383399 0.10191083 0.2519084 ]
No log 8.0 296 0.6639 0.8272 [0.9326288 0.55052265 0.18181818 0.26271186]
No log 9.0 333 0.6863 0.8192 [0.93071286 0.55830389 0.11042945 0.2761194 ]
No log 10.0 370 0.6886 0.8143 [0.92816572 0.56028369 0.1 0.2633452 ]

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
103
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for HealthNLP/pubmedbert_conmod

Finetuned
(16)
this model