SentenceTransformer based on DeepChem/ChemBERTa-77M-MLM
This is a sentence-transformers model finetuned from DeepChem/ChemBERTa-77M-MLM. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: DeepChem/ChemBERTa-77M-MLM
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("HassanCS/chemberta-clintox-tunned-3")
# Run inference
sentences = [
'C[NH+](C)CCc1c[nH]c2ccc(Cn3cncn3)cc12',
'C[N+]12CCC(CC1)C(OC(=O)C(O)(c1ccccc1)c1ccccc1)C2',
'CC12CCCCCC(Cc3ccc(O)cc31)C2[NH3+]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
all-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.5344 |
cosine_accuracy_threshold | 0.6344 |
cosine_f1 | 0.6761 |
cosine_f1_threshold | 0.57 |
cosine_precision | 0.5149 |
cosine_recall | 0.9843 |
cosine_ap | 0.4791 |
cosine_mcc | 0.0755 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,000 training samples
- Columns:
smiles1
,smiles2
, andlabel
- Approximate statistics based on the first 1000 samples:
smiles1 smiles2 label type string string int details - min: 3 tokens
- mean: 46.57 tokens
- max: 221 tokens
- min: 3 tokens
- mean: 54.2 tokens
- max: 221 tokens
- 0: ~49.40%
- 1: ~50.60%
- Samples:
smiles1 smiles2 label C=C1CCC(O)CC1=CC=C1CCCC2(C)C1CCC2C(C)C=CC(C)C(C)C
CCCCCc1cc(O)c2c(c1)OC(C)(C)C1CCC(C)=CC21
1
CNC1=[NH+]c2ccc(Cl)cc2C(c2ccccc2)=N+C1
O=C1CCC(N2C(=O)c3ccccc3C2=O)C(=O)N1
0
CC(=O)Oc1c(C)c(C)c2c(c1C)CCC(C)(CCCC(C)CCCC(C)CCCC(C)C)O2
Nc1nc(Cl)nc2c1ncn2C1OC(CO)C(O)C1F
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 2,008 evaluation samples
- Columns:
smiles1
,smiles2
, andlabel
- Approximate statistics based on the first 1000 samples:
smiles1 smiles2 label type string string int details - min: 18 tokens
- mean: 56.98 tokens
- max: 244 tokens
- min: 18 tokens
- mean: 65.99 tokens
- max: 244 tokens
- 0: ~47.90%
- 1: ~52.10%
- Samples:
smiles1 smiles2 label CC(C)(C)NC(=O)C1CC2CCCCC2C[NH+]1CC(O)C(Cc1ccccc1)NC(=O)C(CC(N)=O)NC(=O)c1ccc2ccccc2n1
CNH+CCc1c[nH]c2ccc(Cn3cncn3)cc12
1
CC12CC(=C[O-])C(=O)CC1CCC1C2CCC2(C)C1CCC2(C)O
CC(C)C1(C(=O)NC2CC(=O)OC2(O)CF)CC(c2nccc3ccccc23)=NO1
0
CC12CCCCCC(Cc3ccc(O)cc31)C2[NH3+]
C[NH2+]C1C(O)C([NH2+]C)C2OC3(O)C(=O)CC(C)OC3OC2C1O
1
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truehub_model_id
: HassanCS/chemberta-clintox-tunned-3batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: HassanCS/chemberta-clintox-tunned-3hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | all-dev_cosine_ap |
---|---|---|---|---|
1.592 | 200 | - | 0.0352 | 0.4742 |
3.176 | 400 | - | 0.0349 | 0.4779 |
3.976 | 500 | 0.0343 | - | - |
4.768 | 600 | - | 0.0344 | 0.4791 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 3
Model tree for HassanCS/chemberta-clintox-tunned-3
Base model
DeepChem/ChemBERTa-77M-MLMEvaluation results
- Cosine Accuracy on all devself-reported0.534
- Cosine Accuracy Threshold on all devself-reported0.634
- Cosine F1 on all devself-reported0.676
- Cosine F1 Threshold on all devself-reported0.570
- Cosine Precision on all devself-reported0.515
- Cosine Recall on all devself-reported0.984
- Cosine Ap on all devself-reported0.479
- Cosine Mcc on all devself-reported0.075