SentenceTransformer based on DeepChem/ChemBERTa-77M-MLM
This is a sentence-transformers model finetuned from DeepChem/ChemBERTa-77M-MLM. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: DeepChem/ChemBERTa-77M-MLM
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("HassanCS/chemBERTa-tuned-on-ClinTox-using-triplet-loss")
# Run inference
sentences = [
'CON=C(C(=O)NC1C(=O)N2C(C(=O)[O-])=C(C[N+]3(C)CCCC3)CSC12)c1csc(N)n1',
'CC1CNc2c(cccc2S(=O)(=O)NC(CCC[NH+]=C(N)N)C(=O)N2CCC(C)CC2C(=O)[O-])C1',
'CC(C)C1(C(=O)NC2CC(=O)OC2(O)CF)CC(c2nccc3ccccc23)=NO1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7135 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 118,400 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 20 tokens
- mean: 33.0 tokens
- max: 60 tokens
- min: 3 tokens
- mean: 47.34 tokens
- max: 212 tokens
- min: 3 tokens
- mean: 53.88 tokens
- max: 212 tokens
- Samples:
anchor positive negative CC(C)CC(NC(=O)CNC(=O)c1cc(Cl)ccc1Cl)B(O)O
CC(=O)OC1CCC2(C)C(=CCC3C2CCC2(C)C(c4cccnc4)=CCC32)C1
CCOC(=O)c1ncn2c1CN(C)C(=O)c1cc(F)ccc1-2
CC(C)CC(NC(=O)CNC(=O)c1cc(Cl)ccc1Cl)B(O)O
COc1ccc(C(CN(C)C)C2(O)CCCCC2)cc1
C[NH2+]C1(C)C2CCC(C2)C1(C)C
CC(C)CC(NC(=O)CNC(=O)c1cc(Cl)ccc1Cl)B(O)O
CNC(=O)c1cc(Oc2ccc(NC(=O)Nc3ccc(Cl)c(C(F)(F)F)c3)cc2)ccn1.Cc1ccc(S(=O)(=O)O)cc1
Nc1ncnc2c1ncn2C1OC(CO)C(O)C1O
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 1,480 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 18 tokens
- mean: 54.07 tokens
- max: 169 tokens
- min: 18 tokens
- mean: 60.4 tokens
- max: 244 tokens
- min: 30 tokens
- mean: 71.25 tokens
- max: 141 tokens
- Samples:
anchor positive negative CC(C)OC(=O)CCCC=CCC1C(O)CC(O)C1C=CC(O)COc1cccc(C(F)(F)F)c1
CC12CCCCCC(Cc3ccc(O)cc31)C2[NH3+]
CC(C)C(CN1CCC(C)(c2cccc(O)c2)C(C)C1)NC(=O)C1Cc2ccc(O)cc2CN1
CC(C)OC(=O)CCCC=CCC1C(O)CC(O)C1C=CC(O)COc1cccc(C(F)(F)F)c1
COc1cc2c(cc1OC)C1CC(=O)C(CC(C)C)C[NH+]1CC2
CC(C)C(CN1CCC(C)(c2cccc(O)c2)C(C)C1)NC(=O)C1Cc2ccc(O)cc2CN1
CC(C)OC(=O)CCCC=CCC1C(O)CC(O)C1C=CC(O)COc1cccc(C(F)(F)F)c1
CNH+CCC=C1c2ccccc2COc2ccc(CC(=O)[O-])cc21
CC(C)C1(C(=O)NC2CC(=O)OC2(O)CF)CC(c2nccc3ccccc23)=NO1
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | all-dev_cosine_accuracy |
---|---|---|---|---|
0.0676 | 500 | 5.0821 | 5.1737 | 0.4047 |
0.1351 | 1000 | 4.9869 | 5.1766 | 0.4230 |
0.2027 | 1500 | 4.5562 | 4.9102 | 0.5345 |
0.2703 | 2000 | 3.2364 | 4.3712 | 0.6534 |
0.3378 | 2500 | 2.0738 | 4.0704 | 0.6736 |
0.4054 | 3000 | 1.4239 | 4.0200 | 0.6635 |
0.4730 | 3500 | 1.1578 | 3.7202 | 0.6791 |
0.5405 | 4000 | 0.9669 | 3.7197 | 0.6831 |
0.6081 | 4500 | 0.714 | 3.8818 | 0.6547 |
0.6757 | 5000 | 0.5359 | 4.0987 | 0.6243 |
0.7432 | 5500 | 0.5663 | 3.8127 | 0.6500 |
0.8108 | 6000 | 0.4827 | 3.8346 | 0.6676 |
0.8784 | 6500 | 0.4758 | 3.8333 | 0.6507 |
0.9459 | 7000 | 0.4759 | 3.6872 | 0.6912 |
1.0135 | 7500 | 0.4651 | 3.7229 | 0.6831 |
1.0811 | 8000 | 0.4739 | 3.8041 | 0.6662 |
1.1486 | 8500 | 0.4458 | 3.8235 | 0.6703 |
1.2162 | 9000 | 0.4189 | 3.7957 | 0.6716 |
1.2838 | 9500 | 0.4504 | 3.7422 | 0.6784 |
1.3514 | 10000 | 0.413 | 3.7588 | 0.6770 |
1.4189 | 10500 | 0.3808 | 3.9750 | 0.6615 |
1.4865 | 11000 | 0.3853 | 3.7417 | 0.6953 |
1.5541 | 11500 | 0.379 | 3.7319 | 0.6993 |
1.6216 | 12000 | 0.429 | 3.5620 | 0.7209 |
1.6892 | 12500 | 0.3735 | 3.6900 | 0.7020 |
1.7568 | 13000 | 0.3908 | 3.8182 | 0.6932 |
1.8243 | 13500 | 0.3848 | 3.7228 | 0.7101 |
1.8919 | 14000 | 0.3777 | 3.6604 | 0.7149 |
1.9595 | 14500 | 0.3912 | 3.7849 | 0.6946 |
2.0269 | 15000 | 0.3282 | 3.8607 | 0.7014 |
2.0945 | 15500 | 0.3324 | 3.8573 | 0.6953 |
2.1620 | 16000 | 0.3852 | 3.9420 | 0.7000 |
2.2296 | 16500 | 0.3633 | 3.7928 | 0.7189 |
2.2972 | 17000 | 0.3493 | 3.8217 | 0.7216 |
2.3647 | 17500 | 0.3554 | 3.8546 | 0.6993 |
2.4323 | 18000 | 0.3363 | 3.7764 | 0.6993 |
2.4999 | 18500 | 0.377 | 3.8224 | 0.6959 |
2.5674 | 19000 | 0.3569 | 3.8376 | 0.7155 |
2.635 | 19500 | 0.3414 | 4.0017 | 0.7034 |
2.7026 | 20000 | 0.3567 | 3.7405 | 0.7135 |
2.7701 | 20500 | 0.3524 | 3.9446 | 0.7189 |
2.8377 | 21000 | 0.3347 | 3.8140 | 0.7169 |
2.9053 | 21500 | 0.3458 | 4.0700 | 0.7088 |
2.9728 | 22000 | 0.3632 | 3.7930 | 0.7081 |
3.0404 | 22500 | 0.3496 | 3.9884 | 0.7236 |
3.1080 | 23000 | 0.3426 | 3.7102 | 0.7155 |
3.1755 | 23500 | 0.3579 | 3.9201 | 0.7135 |
3.2431 | 24000 | 0.3553 | 4.2237 | 0.7270 |
3.3107 | 24500 | 0.345 | 3.8090 | 0.7189 |
3.3782 | 25000 | 0.3475 | 3.7802 | 0.7284 |
3.4458 | 25500 | 0.3326 | 3.7549 | 0.7250 |
3.5134 | 26000 | 0.3228 | 3.6717 | 0.7216 |
3.5809 | 26500 | 0.3311 | 3.8241 | 0.7155 |
3.6485 | 27000 | 0.3215 | 3.8151 | 0.7142 |
3.7161 | 27500 | 0.3534 | 3.8639 | 0.7149 |
3.7836 | 28000 | 0.3369 | 4.0947 | 0.7101 |
3.8512 | 28500 | 0.3229 | 4.0495 | 0.7101 |
3.9188 | 29000 | 0.3442 | 4.0408 | 0.7169 |
3.9864 | 29500 | 0.3059 | 3.9493 | 0.6959 |
4.0538 | 30000 | 0.3349 | 4.0431 | 0.7108 |
4.1214 | 30500 | 0.3266 | 4.0224 | 0.7189 |
4.1889 | 31000 | 0.3501 | 3.9502 | 0.7169 |
4.2565 | 31500 | 0.3676 | 3.8903 | 0.7196 |
4.3241 | 32000 | 0.3191 | 3.7994 | 0.7162 |
4.3916 | 32500 | 0.3317 | 3.7889 | 0.7182 |
4.4592 | 33000 | 0.3304 | 3.8661 | 0.7108 |
4.5268 | 33500 | 0.3332 | 3.8822 | 0.7115 |
4.5943 | 34000 | 0.3435 | 3.7945 | 0.7088 |
4.6619 | 34500 | 0.317 | 3.8721 | 0.7243 |
4.7295 | 35000 | 0.3038 | 3.8615 | 0.7209 |
4.7970 | 35500 | 0.3093 | 3.8360 | 0.7162 |
4.8646 | 36000 | 0.3309 | 3.8277 | 0.7155 |
4.9322 | 36500 | 0.3378 | 3.7988 | 0.7128 |
4.9997 | 37000 | 0.311 | 3.8015 | 0.7135 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 2
Model tree for HassanCS/chemBERTa-tuned-on-ClinTox-using-triplet-loss
Base model
DeepChem/ChemBERTa-77M-MLM