Edit model card

SegFormer_Clean_Set1_95images_mit-b5_Grayscale

This model is a fine-tuned version of nvidia/mit-b5 on the Hasano20/Clean_Set1_95images dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0103
  • Val Loss: 0.0229
  • Mean Iou: 0.9729
  • Mean Accuracy: 0.9859
  • Overall Accuracy: 0.9928
  • Accuracy Background: 0.9972
  • Accuracy Melt: 0.9669
  • Accuracy Substrate: 0.9937
  • Iou Background: 0.9944
  • Iou Melt: 0.9370
  • Iou Substrate: 0.9871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.1375 5.5556 50 0.1577 0.7820 0.8338 0.9411 0.9857 0.5352 0.9806 0.9746 0.4754 0.8959
0.0403 11.1111 100 0.1948 0.7535 0.7960 0.9378 0.9893 0.4011 0.9977 0.9826 0.3954 0.8825
0.0291 16.6667 150 0.0484 0.9337 0.9479 0.9832 0.9969 0.8495 0.9973 0.9884 0.8414 0.9712
0.0114 22.2222 200 0.0273 0.9634 0.9808 0.9903 0.9930 0.9544 0.9950 0.9917 0.9149 0.9838
0.0138 27.7778 250 0.0289 0.9655 0.9782 0.9910 0.9966 0.9423 0.9956 0.9941 0.9190 0.9836
0.0072 33.3333 300 0.0257 0.9689 0.9855 0.9918 0.9975 0.9682 0.9908 0.9945 0.9276 0.9847
0.007 38.8889 350 0.0234 0.9722 0.9862 0.9926 0.9968 0.9684 0.9934 0.9944 0.9354 0.9867
0.0063 44.4444 400 0.0232 0.9727 0.9866 0.9927 0.9971 0.9696 0.9931 0.9945 0.9366 0.9870
0.0103 50.0 450 0.0229 0.9729 0.9859 0.9928 0.9972 0.9669 0.9937 0.9944 0.9370 0.9871

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hasano20/segformer_clean-set1_mit-b5_rgb

Base model

nvidia/mit-b5
Finetuned
(42)
this model