Edit model card

SegFormer_mit-b5_Clean-Set3_RGB

This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0207
  • Mean Iou: 0.9744
  • Mean Accuracy: 0.9865
  • Overall Accuracy: 0.9940
  • Accuracy Background: 0.9965
  • Accuracy Melt: 0.9672
  • Accuracy Substrate: 0.9957
  • Iou Background: 0.9938
  • Iou Melt: 0.9389
  • Iou Substrate: 0.9905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.3016 0.9434 50 0.2259 0.6885 0.7339 0.9268 0.9683 0.2451 0.9882 0.9455 0.2365 0.8834
0.1267 1.8868 100 0.1062 0.8505 0.9168 0.9620 0.9849 0.7996 0.9660 0.9706 0.6411 0.9398
0.0982 2.8302 150 0.0765 0.8725 0.9003 0.9718 0.9905 0.7183 0.9920 0.9803 0.6829 0.9544
0.0626 3.7736 200 0.0596 0.9124 0.9496 0.9793 0.9921 0.8731 0.9836 0.9824 0.7879 0.9668
0.0601 4.7170 250 0.0776 0.8931 0.9394 0.9733 0.9814 0.8536 0.9834 0.9762 0.7466 0.9566
0.0662 5.6604 300 0.0548 0.9176 0.9660 0.9803 0.9919 0.9280 0.9781 0.9875 0.7993 0.9662
0.0297 6.6038 350 0.0353 0.9452 0.9791 0.9872 0.9918 0.9581 0.9875 0.9895 0.8670 0.9792
0.0197 7.5472 400 0.0422 0.9332 0.9520 0.9853 0.9949 0.8670 0.9940 0.9899 0.8343 0.9753
0.0274 8.4906 450 0.0281 0.9589 0.9783 0.9904 0.9944 0.9475 0.9932 0.9913 0.9012 0.9843
0.0197 9.4340 500 0.0280 0.9569 0.9792 0.9901 0.9965 0.9507 0.9904 0.9920 0.8950 0.9836
0.0185 10.3774 550 0.0230 0.9644 0.9819 0.9918 0.9961 0.9564 0.9931 0.9923 0.9142 0.9867
0.0131 11.3208 600 0.0248 0.9663 0.9788 0.9922 0.9951 0.9449 0.9964 0.9922 0.9192 0.9874
0.0123 12.2642 650 0.0229 0.9682 0.9784 0.9926 0.9957 0.9424 0.9972 0.9931 0.9236 0.9879
0.0094 13.2075 700 0.0220 0.9673 0.9811 0.9925 0.9962 0.9519 0.9951 0.9930 0.9209 0.9878
0.0092 14.1509 750 0.0198 0.9721 0.9845 0.9935 0.9962 0.9617 0.9956 0.9933 0.9334 0.9895
0.0119 15.0943 800 0.0210 0.9688 0.9828 0.9928 0.9971 0.9571 0.9943 0.9932 0.9250 0.9883
0.0092 16.0377 850 0.0220 0.9688 0.9819 0.9928 0.9959 0.9543 0.9957 0.9929 0.9249 0.9885
0.0092 16.9811 900 0.0186 0.9718 0.9859 0.9934 0.9965 0.9666 0.9947 0.9936 0.9324 0.9894
0.0069 17.9245 950 0.0201 0.9725 0.9831 0.9936 0.9963 0.9564 0.9967 0.9937 0.9341 0.9898
0.011 18.8679 1000 0.0190 0.9742 0.9851 0.9939 0.9962 0.9628 0.9964 0.9937 0.9388 0.9903
0.009 19.8113 1050 0.0219 0.9714 0.9855 0.9933 0.9972 0.9652 0.9940 0.9936 0.9314 0.9891
0.0086 20.7547 1100 0.0199 0.9737 0.9872 0.9938 0.9961 0.9702 0.9953 0.9937 0.9373 0.9901
0.0086 21.6981 1150 0.0206 0.9737 0.9850 0.9938 0.9957 0.9625 0.9967 0.9936 0.9372 0.9902
0.0052 22.6415 1200 0.0205 0.9737 0.9866 0.9939 0.9960 0.9682 0.9957 0.9936 0.9372 0.9903
0.0079 23.5849 1250 0.0205 0.9745 0.9861 0.9940 0.9962 0.9658 0.9962 0.9937 0.9393 0.9905
0.0057 24.5283 1300 0.0210 0.9746 0.9849 0.9940 0.9961 0.9618 0.9968 0.9938 0.9397 0.9904
0.007 25.4717 1350 0.0212 0.9735 0.9858 0.9938 0.9963 0.9652 0.9957 0.9936 0.9369 0.9901
0.0059 26.4151 1400 0.0207 0.9744 0.9865 0.9940 0.9965 0.9672 0.9957 0.9938 0.9389 0.9905

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hasano20/SegFormer_mit-b5_Clean-Set3_RGB

Base model

nvidia/mit-b5
Finetuned
(42)
this model