pet_audio_class
This model is a fine-tuned version of hakeem750/pet_audio_class on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2339
- Accuracy: 0.9524
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 3.8343 | 0.0794 |
No log | 2.0 | 4 | 3.7130 | 0.0952 |
No log | 3.0 | 6 | 3.5158 | 0.1111 |
No log | 4.0 | 8 | 3.2104 | 0.1111 |
No log | 5.0 | 10 | 2.6008 | 0.1111 |
No log | 6.0 | 12 | 1.5964 | 0.5714 |
No log | 7.0 | 14 | 1.3373 | 0.5079 |
No log | 8.0 | 16 | 1.2256 | 0.5079 |
No log | 9.0 | 18 | 0.9717 | 0.5079 |
2.4295 | 10.0 | 20 | 0.7747 | 0.5397 |
2.4295 | 11.0 | 22 | 0.6721 | 0.5556 |
2.4295 | 12.0 | 24 | 0.5051 | 0.8571 |
2.4295 | 13.0 | 26 | 0.3946 | 0.9206 |
2.4295 | 14.0 | 28 | 0.3315 | 0.9365 |
2.4295 | 15.0 | 30 | 0.3101 | 0.9524 |
2.4295 | 16.0 | 32 | 0.2873 | 0.9524 |
2.4295 | 17.0 | 34 | 0.2621 | 0.9683 |
2.4295 | 18.0 | 36 | 0.2666 | 0.9365 |
2.4295 | 19.0 | 38 | 0.2871 | 0.9365 |
0.3966 | 20.0 | 40 | 0.2009 | 0.9683 |
0.3966 | 21.0 | 42 | 0.3878 | 0.9048 |
0.3966 | 22.0 | 44 | 0.1284 | 0.9841 |
0.3966 | 23.0 | 46 | 0.1758 | 0.9683 |
0.3966 | 24.0 | 48 | 0.1843 | 0.9683 |
0.3966 | 25.0 | 50 | 0.1165 | 0.9841 |
0.3966 | 26.0 | 52 | 0.1204 | 0.9841 |
0.3966 | 27.0 | 54 | 0.1801 | 0.9683 |
0.3966 | 28.0 | 56 | 0.4004 | 0.9048 |
0.3966 | 29.0 | 58 | 0.3515 | 0.9206 |
0.1757 | 30.0 | 60 | 0.4325 | 0.9048 |
0.1757 | 31.0 | 62 | 0.1757 | 0.9683 |
0.1757 | 32.0 | 64 | 0.3189 | 0.8889 |
0.1757 | 33.0 | 66 | 0.3106 | 0.9048 |
0.1757 | 34.0 | 68 | 0.2002 | 0.9524 |
0.1757 | 35.0 | 70 | 0.1737 | 0.9683 |
0.1757 | 36.0 | 72 | 0.1659 | 0.9683 |
0.1757 | 37.0 | 74 | 0.1682 | 0.9683 |
0.1757 | 38.0 | 76 | 0.2712 | 0.9365 |
0.1757 | 39.0 | 78 | 0.3072 | 0.9206 |
0.114 | 40.0 | 80 | 0.2328 | 0.9524 |
0.114 | 41.0 | 82 | 0.1956 | 0.9524 |
0.114 | 42.0 | 84 | 0.1763 | 0.9683 |
0.114 | 43.0 | 86 | 0.1677 | 0.9683 |
0.114 | 44.0 | 88 | 0.1669 | 0.9683 |
0.114 | 45.0 | 90 | 0.2476 | 0.9365 |
0.114 | 46.0 | 92 | 0.2978 | 0.9206 |
0.114 | 47.0 | 94 | 0.1630 | 0.9683 |
0.114 | 48.0 | 96 | 0.1587 | 0.9683 |
0.114 | 49.0 | 98 | 0.1570 | 0.9683 |
0.0618 | 50.0 | 100 | 0.1557 | 0.9683 |
0.0618 | 51.0 | 102 | 0.2235 | 0.9524 |
0.0618 | 52.0 | 104 | 0.2377 | 0.9365 |
0.0618 | 53.0 | 106 | 0.2038 | 0.9524 |
0.0618 | 54.0 | 108 | 0.2093 | 0.9524 |
0.0618 | 55.0 | 110 | 0.2572 | 0.9365 |
0.0618 | 56.0 | 112 | 0.3067 | 0.9365 |
0.0618 | 57.0 | 114 | 0.2866 | 0.9206 |
0.0618 | 58.0 | 116 | 0.2155 | 0.9524 |
0.0618 | 59.0 | 118 | 0.2142 | 0.9524 |
0.0581 | 60.0 | 120 | 0.2086 | 0.9524 |
0.0581 | 61.0 | 122 | 0.1915 | 0.9524 |
0.0581 | 62.0 | 124 | 0.1775 | 0.9524 |
0.0581 | 63.0 | 126 | 0.1962 | 0.9524 |
0.0581 | 64.0 | 128 | 0.2140 | 0.9524 |
0.0581 | 65.0 | 130 | 0.2255 | 0.9524 |
0.0581 | 66.0 | 132 | 0.2303 | 0.9524 |
0.0581 | 67.0 | 134 | 0.2321 | 0.9524 |
0.0581 | 68.0 | 136 | 0.2311 | 0.9524 |
0.0581 | 69.0 | 138 | 0.2265 | 0.9524 |
0.0293 | 70.0 | 140 | 0.2208 | 0.9524 |
0.0293 | 71.0 | 142 | 0.2155 | 0.9524 |
0.0293 | 72.0 | 144 | 0.2121 | 0.9524 |
0.0293 | 73.0 | 146 | 0.2104 | 0.9524 |
0.0293 | 74.0 | 148 | 0.2093 | 0.9524 |
0.0293 | 75.0 | 150 | 0.2032 | 0.9524 |
0.0293 | 76.0 | 152 | 0.1900 | 0.9524 |
0.0293 | 77.0 | 154 | 0.1778 | 0.9683 |
0.0293 | 78.0 | 156 | 0.1753 | 0.9683 |
0.0293 | 79.0 | 158 | 0.1748 | 0.9683 |
0.0197 | 80.0 | 160 | 0.1746 | 0.9683 |
0.0197 | 81.0 | 162 | 0.1780 | 0.9683 |
0.0197 | 82.0 | 164 | 0.1970 | 0.9524 |
0.0197 | 83.0 | 166 | 0.2126 | 0.9524 |
0.0197 | 84.0 | 168 | 0.2201 | 0.9524 |
0.0197 | 85.0 | 170 | 0.2239 | 0.9524 |
0.0197 | 86.0 | 172 | 0.2264 | 0.9524 |
0.0197 | 87.0 | 174 | 0.2279 | 0.9524 |
0.0197 | 88.0 | 176 | 0.2291 | 0.9524 |
0.0197 | 89.0 | 178 | 0.2299 | 0.9524 |
0.0153 | 90.0 | 180 | 0.2306 | 0.9524 |
0.0153 | 91.0 | 182 | 0.2312 | 0.9524 |
0.0153 | 92.0 | 184 | 0.2318 | 0.9524 |
0.0153 | 93.0 | 186 | 0.2323 | 0.9524 |
0.0153 | 94.0 | 188 | 0.2327 | 0.9524 |
0.0153 | 95.0 | 190 | 0.2331 | 0.9524 |
0.0153 | 96.0 | 192 | 0.2333 | 0.9524 |
0.0153 | 97.0 | 194 | 0.2335 | 0.9524 |
0.0153 | 98.0 | 196 | 0.2336 | 0.9524 |
0.0153 | 99.0 | 198 | 0.2338 | 0.9524 |
0.0142 | 100.0 | 200 | 0.2339 | 0.9524 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 193
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support