Optimum Habana is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at hf.co/hardware/habana.
Whisper model HPU configuration
This model only contains the GaudiConfig
file for running the Whisper model on Habana's Gaudi processors (HPU).
This model contains no model weights, only a GaudiConfig.
This enables to specify:
use_fused_adam
: whether to use Habana's custom AdamW implementationuse_fused_clip_norm
: whether to use Habana's fused gradient norm clipping operatoruse_torch_autocast
: whether to use Torch Autocast for managing mixed precision
Usage
The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.
It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.
Here is a sequence-to-sequence speech recognition example script to fine-tune a model. You can run it with Whisper with the following command:
python run_speech_recognition_seq2seq.py \
--model_name_or_path="openai/whisper-small" \
--dataset_name="mozilla-foundation/common_voice_11_0" \
--dataset_config_name="hi" \
--language="hindi" \
--train_split_name="train+validation" \
--eval_split_name="test" \
--gaudi_config_name="Habana/whisper" \
--max_steps="5000" \
--output_dir="/tmp/whisper-small-hi" \
--per_device_train_batch_size="48" \
--per_device_eval_batch_size="2" \
--logging_steps="25" \
--learning_rate="1e-5" \
--warmup_steps="500" \
--evaluation_strategy="steps" \
--eval_steps="1000" \
--save_strategy="steps" \
--save_steps="1000" \
--generation_max_length="225" \
--preprocessing_num_workers="1" \
--length_column_name="input_length" \
--max_duration_in_seconds="30" \
--text_column_name="sentence" \
--freeze_feature_encoder="False" \
--group_by_length \
--bf16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--predict_with_generate \
--use_habana \
--use_hpu_graphs_for_inference \
--label_features_max_length 128 \
--dataloader_num_workers 8 \
--throughput_warmup_steps 3
Check the documentation out for more advanced usage and examples.