Optimum Habana is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at hf.co/hardware/habana.

Stable Diffusion HPU configuration

This model only contains the GaudiConfig file for running Stable Diffusion v1 (e.g. runwayml/stable-diffusion-v1-5) on Habana's Gaudi processors (HPU).

This model contains no model weights, only a GaudiConfig.

This enables to specify:

  • use_torch_autocast: whether to use Torch Autocast for managing mixed precision

Usage

The GaudiStableDiffusionPipeline (GaudiDDIMScheduler) is instantiated the same way as the StableDiffusionPipeline (DDIMScheduler) in the πŸ€— Diffusers library. The only difference is that there are a few new training arguments specific to HPUs.
It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.

Here is an example with one prompt:

from optimum.habana import GaudiConfig
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline


model_name = "runwayml/stable-diffusion-v1-5"

scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")

pipeline = GaudiStableDiffusionPipeline.from_pretrained(
    model_name,
    scheduler=scheduler,
    use_habana=True,
    use_hpu_graphs=True,
    gaudi_config="Habana/stable-diffusion",
)

outputs = pipeline(
    ["An image of a squirrel in Picasso style"],
    num_images_per_prompt=16,
    batch_size=4,
)

Check out the documentation and this example for more advanced usage.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Spaces using Habana/stable-diffusion 2