HERIUN's picture
End of training
8c0a38f verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-mn-colab-CV16.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: mn
          split: test
          args: mn
        metrics:
          - name: Wer
            type: wer
            value: 0.32368936262780074

w2v-bert-2.0-mn-colab-CV16.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5152
  • Wer: 0.3237

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8121 2.3715 300 0.6300 0.5082
0.3404 4.7431 600 0.5988 0.4459
0.1726 7.1146 900 0.4940 0.3769
0.0708 9.4862 1200 0.5152 0.3237

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3