alpha: 0.1 | |
base_model: Qwen/Qwen2.5-3B-Instruct | |
custom_name: TV | |
dtype: bfloat16 | |
lambdas: | |
- 1.0 | |
- 1.0 | |
- 1.0 | |
lora_config: null | |
loss_types: | |
- anti-watermark-tv | |
- anti-watermark-tv | |
meta_learning_config: null | |
n_wm_tokens: 0 | |
proportions: | |
- 0.6 | |
- 0.2 | |
- 0.2 | |
random_training_config: null | |
regularization_datasets: | |
- !!python/object/apply:finetuning.dataset.DatasetType | |
- AlpacaGPT4 | |
- !!python/object/apply:finetuning.dataset.DatasetType | |
- OpenWebText | |
sequence_length: 512 | |
streaming: true | |
training_args: | |
bf16: false | |
do_train: true | |
fp16: false | |
gradient_accumulation_steps: 16 | |
gradient_checkpointing: false | |
hub_strategy: all_checkpoints | |
learning_rate: 2.0e-05 | |
logging_steps: 10 | |
lr_scheduler_type: cosine | |
max_steps: 2500 | |
num_train_epochs: 1 | |
optim: adafactor | |
output_dir: Grogros/dmWM-Qwen-Qwen2.5-3B-Instruct-LucieFr-Al4-OWT-TV | |
overwrite_output_dir: true | |
per_device_train_batch_size: 4 | |
push_to_hub: true | |
report_to: none | |
save_steps: 2500 | |
save_strategy: steps | |
warmup_ratio: 0.1 | |
watermark_datasets: | |
- !!python/object/apply:finetuning.dataset.DatasetType | |
- LucieFr | |
watermark_eval_config: [] | |