alpha: 0.1 base_model: Qwen/Qwen2.5-3B-Instruct custom_name: TV dtype: bfloat16 lambdas: - 1.0 - 1.0 - 1.0 lora_config: null loss_types: - anti-watermark-tv - anti-watermark-tv meta_learning_config: null n_wm_tokens: 0 proportions: - 0.6 - 0.2 - 0.2 random_training_config: null regularization_datasets: - !!python/object/apply:finetuning.dataset.DatasetType - AlpacaGPT4 - !!python/object/apply:finetuning.dataset.DatasetType - OpenWebText sequence_length: 512 streaming: true training_args: bf16: false do_train: true fp16: false gradient_accumulation_steps: 16 gradient_checkpointing: false hub_strategy: all_checkpoints learning_rate: 2.0e-05 logging_steps: 10 lr_scheduler_type: cosine max_steps: 2500 num_train_epochs: 1 optim: adafactor output_dir: Grogros/dmWM-Qwen-Qwen2.5-3B-Instruct-LucieFr-Al4-OWT-TV overwrite_output_dir: true per_device_train_batch_size: 4 push_to_hub: true report_to: none save_steps: 2500 save_strategy: steps warmup_ratio: 0.1 watermark_datasets: - !!python/object/apply:finetuning.dataset.DatasetType - LucieFr watermark_eval_config: []