File size: 16,431 Bytes
6b03e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import logging as log
import os
from pathlib import Path

import torch
import torchvision.transforms as transforms
import torchvision.models as models
from torch import nn
from torch.nn import functional as F

from enum import Enum


class AdvEnum(Enum):
    @classmethod
    def list(cls):
        return list(map(lambda c: c.value, cls))

    @classmethod
    def list_name_value(cls):
        return list(map(lambda c: (c.name, c.value), cls))


class DecoNetMode(AdvEnum):
    FREEZE_DECO = 0
    FREEZE_PTMODEL = 1
    FREEZE_PTMODEL_NO_FC = 2
    UNFREEZE_ALL = 3
    FREEZE_ALL = 4
    FREEZE_ALL_NO_FC = 5


class DecoType(AdvEnum):
    NO = 0
    DECONV = 1
    RESIZE_CONV = 2
    ColorUDECO = 16
    PIXEL_SHUFFLE = 20


def get_deco_model(use_deco, out_deco) -> nn.Module:
    if use_deco in [DecoType.DECONV, DecoType.DECONV_NORM]:
        return StandardDECO(out_deco, deconv=True)
    elif use_deco in [DecoType.RESIZE_CONV]:
        return StandardDECO(out_deco, deconv=False)
    elif use_deco is DecoType.PIXEL_SHUFFLE:
        return PixelShuffle(out_deco, lrelu=False)
    elif use_deco is DecoType.ColorUDECO:
        return ColorUDECO(out_deco)
    else:
        raise ValueError("Module not found")


class PreTrainedModel(AdvEnum):
    DENSENET_121 = 0
    RESNET_18 = 1
    RESNET_34 = 2
    RESNET_50 = 3
    VGG11 = 4
    VGG11_BN = 5


def get_pt_model(model, output, pretrained=True):
    input = 224
    if not isinstance(model, PreTrainedModel):
        model = PreTrainedModel(model)
    pt_model = None
    if model == PreTrainedModel.DENSENET_121:
        pt_model = models.densenet121(pretrained=pretrained)
        num_ftrs = pt_model.classifier.in_features
        pt_model.classifier = nn.Linear(num_ftrs, output)
        pt_model.last_layer_name = "classifier"
    elif model == PreTrainedModel.RESNET_18:
        pt_model = models.resnet18(pretrained=pretrained)
        num_ftrs = pt_model.fc.in_features
        pt_model.fc = nn.Linear(num_ftrs, output)
        pt_model.last_layer_name = "fc"
    elif model == PreTrainedModel.RESNET_34:
        pt_model = models.resnet34(pretrained=pretrained)
        num_ftrs = pt_model.fc.in_features
        pt_model.fc = nn.Linear(num_ftrs, output)
        pt_model.last_layer_name = "fc"
    elif model == PreTrainedModel.RESNET_50:
        pt_model = models.resnet50(pretrained=pretrained)
        num_ftrs = pt_model.fc.in_features
        pt_model.fc = nn.Linear(num_ftrs, output)
        pt_model.last_layer_name = "fc"
    elif model == PreTrainedModel.VGG11:
        pt_model = models.vgg11(pretrained=pretrained)
        num_ftrs = pt_model.classifier[6].in_features
        pt_model.classifier[6] = nn.Linear(num_ftrs, output)
        pt_model.last_layer_name = "classifier.6"
    elif model == PreTrainedModel.VGG11_BN:
        pt_model = models.vgg11_bn(pretrained=pretrained)
        num_ftrs = pt_model.classifier[6].in_features
        pt_model.classifier[6] = nn.Linear(num_ftrs, output)
        pt_model.last_layer_name = "classifier.6"
    else:
        raise ValueError("Model not found")

    return pt_model, input


class DecoNet(nn.Module):
    """

    Colorization module(optional)+Model

    """

    def __init__(self, output=14,

                 deco_type=DecoType.ColorUDECO,

                 pt_model=PreTrainedModel.RESNET_18,

                 pre_trained=True,

                 training_mode=DecoNetMode.FREEZE_PTMODEL_NO_FC,

                 use_aap=False):
        super().__init__()
        # Pre-trained Model
        self.deco_type = deco_type
        self.training_mode = training_mode
        self.use_aap = use_aap
        pt_model, self.out_deco = get_pt_model(pt_model, output, pre_trained)
        self.last_layer_name = pt_model.last_layer_name
        # DECO if needed
        if self.deco_type is not DecoType.NO:
            self.deco = get_deco_model(self.deco_type, self.out_deco)
        else:
            self.deco = None
        self.pt_model = pt_model
        self.set_mode(training_mode)

    def set_mode(self, mode, print=True):
        if not isinstance(mode, DecoNetMode):
            mode = DecoNetMode(mode)
        if mode == DecoNetMode.UNFREEZE_ALL:
            for param in self.parameters():
                param.requires_grad = True
        elif mode == DecoNetMode.FREEZE_DECO:
            self.set_mode(DecoNetMode.UNFREEZE_ALL, False)
            for param in self.deco.parameters():
                param.requires_grad = False
        elif mode == DecoNetMode.FREEZE_PTMODEL:
            self.set_mode(DecoNetMode.UNFREEZE_ALL, False)
            for param in self.pt_model.parameters():
                param.requires_grad = False
        elif mode == DecoNetMode.FREEZE_PTMODEL_NO_FC:
            self.set_mode(DecoNetMode.UNFREEZE_ALL, False)
            for name, param in self.pt_model.named_parameters():
                if self.last_layer_name not in name:
                    param.requires_grad = False
        elif mode == DecoNetMode.FREEZE_ALL:
            for param in self.parameters():
                param.requires_grad = False
        elif mode == DecoNetMode.FREEZE_ALL_NO_FC:
            self.set_mode(DecoNetMode.FREEZE_ALL, False)
            # Unfreeze last layer
            for name, param in self.pt_model.named_parameters():
                if self.last_layer_name in name:
                    param.requires_grad = True

        if print:
            log.info("#############################################")
            log.info("PARAMETERS STATUS:")
            for name, param in self.named_parameters():
                log.info("{} : {}".format(name, param.requires_grad))
            log.info("#############################################")

    def get_layer_weight(self, sel_name: str = ""):
        if sel_name == "":
            sel_name = self.last_layer_name
        res = []
        for name, param in self.pt_model.named_parameters():
            if sel_name in name:
                res.append(param)

        return res

    def forward(self, xb):
        """

        @:param xb : tensor

          Batch of input images



        @:return tensor

          A batch of output images

        """
        if self.deco is not None:
            xb = self.deco(xb)
            if self.use_aap:
                xb = F.adaptive_avg_pool2d(xb, (self.out_deco, self.out_deco))
        return self.pt_model(xb)

    def clean_last_layer(self):
        pt_model_type = self.pt_model

        if pt_model_type == PreTrainedModel.VGG11_BN or pt_model_type == PreTrainedModel.VGG11:
            self.pt_model.classifier[6].reset_parameters()
        else:
            last_layer_name = list(self.pt_model._modules)[-1]
            self.pt_model._modules[last_layer_name].reset_parameters()

        log.info("Last layer cleaned!")

    def last_layer_size(self):
        pt_model_type = self.pt_model
        if pt_model_type == PreTrainedModel.VGG11_BN or pt_model_type == PreTrainedModel.VGG11:
            return self.pt_model.classifier[6].weight.shape[-1]
        else:
            last_layer_name = list(self.pt_model._modules)[-1]
            return self.pt_model._modules[last_layer_name].shape[-1]

    def load_deco_state_dict(self, state_dict):
        if self.deco is None:
            self.deco = get_deco_model(self.deco_type, self.out_deco)
        if hasattr(self.deco, "load_state_dict"):
            self.deco.load_state_dict(state_dict)
        else:
            return False
        self.set_mode(self.training_mode)
        return True


def default_deco__weight_init(m):
    if isinstance(m, nn.Conv2d):
        # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        # m.weight.data.normal_(0, math.sqrt(2. / n))
        torch.nn.init.xavier_uniform_(m.weight)
    elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()


def bn_weight_init(m):
    if isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()


class BaseDECO(nn.Module):
    def __init__(self, out=224, init=None):
        super().__init__()
        self.out_s = out
        self.init = init

    def set_output_size(self, out_s):
        self.out_s = out_s

    def init_weights(self):
        if self.init is None:
            pass
        elif self.init == 0:
            self.apply(default_deco__weight_init)
        elif self.init == 1:
            self.apply(bn_weight_init)


class ResBlock(nn.Module):
    def __init__(self, ni, nf=None, kernel=3, stride=1, padding=1):
        super().__init__()
        if nf is None:
            nf = ni
        self.conv1 = conv_layer(ni, nf, kernel=kernel, stride=stride, padding=padding)
        self.conv2 = conv_layer(nf, nf, kernel=kernel, stride=stride, padding=padding)

    def forward(self, x):
        return x + self.conv2(self.conv1(x))


def conv_layer(in_layer, out_layer, kernel=3, stride=1, padding=1, instanceNorm=False):
    return nn.Sequential(
        nn.Conv2d(in_layer, out_layer, kernel_size=kernel, stride=stride, padding=padding),
        nn.BatchNorm2d(out_layer) if not instanceNorm else nn.InstanceNorm2d(out_layer),
        nn.LeakyReLU(inplace=True)
    )


def _make_res_layers(nl, ni, kernel=3, stride=1, padding=1):
    layers = []
    for i in range(nl):
        layers.append(ResBlock(ni, kernel=kernel, stride=stride, padding=padding))

    return nn.Sequential(*layers)


class StandardDECO(BaseDECO):
    """

    Standard DECO Module

    """

    def __init__(self, out=224, init=0, deconv=False):
        super().__init__(out, init)
        self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=2)
        self.bn1 = nn.BatchNorm2d(64)
        # ReLU
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.resblocks = _make_res_layers(8, 64)
        self.conv_last = nn.Conv2d(64, 3, kernel_size=1)
        self.deconv = deconv
        if deconv:
            # TODO: Check if use "groups = 1"
            self.deconv = nn.ConvTranspose2d(in_channels=3, out_channels=3, kernel_size=8, padding=2, stride=4,
                                             groups=3, bias=False)
        else:
            self.pad = nn.ReflectionPad2d(1)
            self.conv_up = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0, stride=1)

        self.init_weights()

    def forward(self, xb):
        """

        @:param xb : Tensor

          Batch of input images



        @:return tensor

          A batch of output images

        """
        _xb = self.maxpool(F.leaky_relu(self.bn1(self.conv1(xb))))
        _xb = self.resblocks(_xb)
        _xb = self.conv_last(_xb)
        if self.deconv:
            _xb = self.deconv(_xb, output_size=xb.shape)
        else:
            _xb = self.conv_up(self.pad(F.interpolate(_xb, scale_factor=4, mode='nearest')))
        return _xb


def icnr(x, scale=4, init=nn.init.kaiming_normal_):
    """ ICNR init of `x`, with `scale` and `init` function.



        Checkerboard artifact free sub-pixel convolution: https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf

    """
    ni, nf, h, w = x.shape
    ni2 = int(ni / (scale ** 2))
    k = init(torch.zeros([ni2, nf, h, w])).transpose(0, 1)
    k = k.contiguous().view(ni2, nf, -1)
    k = k.repeat(1, 1, scale ** 2)
    k = k.contiguous().view([nf, ni, h, w]).transpose(0, 1)
    x.data.copy_(k)


class PixelShuffle_ICNR(nn.Module):
    """ Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init,

        and `weight_norm`.



        "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts":

        https://arxiv.org/abs/1806.02658

    """

    def __init__(self, ni: int, nf: int = None, scale: int = 4, icnr_init=True, blur_k=2, blur_s=1,

                 blur_pad=(1, 0, 1, 0), lrelu=True):
        super().__init__()
        nf = ni if nf is None else nf
        self.conv = conv_layer(ni, nf * (scale ** 2), kernel=1, padding=0, stride=1) if lrelu else nn.Sequential(
            nn.Conv2d(64, 3 * (scale ** 2), 1, 1, 0), nn.BatchNorm2d(3 * (scale ** 2)))
        if icnr_init:
            icnr(self.conv[0].weight, scale=scale)
        self.act = nn.LeakyReLU(inplace=False) if lrelu else nn.Hardtanh(-10000, 10000)
        self.shuf = nn.PixelShuffle(scale)
        # Blurring over (h*w) kernel
        self.pad = nn.ReplicationPad2d(blur_pad)
        self.blur = nn.AvgPool2d(blur_k, stride=blur_s)

    def forward(self, x):
        x = self.shuf(self.act(self.conv(x)))
        return self.blur(self.pad(x))


class PixelShuffle(BaseDECO):
    """

    PixelShuffle Module

    """

    def __init__(self, out=224, init=1, scale=4, lrelu=False):
        super().__init__(out, init)
        # Which value should I use for stride and padding?
        self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=2)
        self.bn1 = nn.BatchNorm2d(64)
        self.act1 = nn.LeakyReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.resblocks = _make_res_layers(8, 64)
        self.pixel_shuffle = PixelShuffle_ICNR(ni=64, nf=3, scale=scale, lrelu=lrelu)
        self.init_weights()

    def forward(self, xb):
        """

        @:param xb : Tensor

          Batch of input images



        @:return tensor

          A batch of output images

        """
        _xb = self.maxpool(self.act1(self.bn1(self.conv1(xb))))
        _xb = self.resblocks(_xb)

        return self.pixel_shuffle(_xb)


class ColorUDECO(BaseDECO):
    """

    ColorUDECO Module

    """

    def __init__(self, out=224, init=0, in_ch=1, out_ch=3):
        super().__init__(out, init)
        self.dw1 = ColorDown(in_ch, 16)
        self.dw2 = ColorDown(16, 32)
        self.dw3 = ColorDown(32, 64)
        self.up1 = ColorUp(64, 32)
        self.up2 = ColorUp(64, 16)
        self.out = ColorOut(32, 16, out_ch)

    def forward(self, x1):
        """

        @:param x1 : Tensor

          Batch of input images



        @:return tensor

          A batch of output images

        """
        x1 = self.dw1(x1)
        x2 = self.dw2(x1)
        x3 = self.dw3(x2)
        x3 = self.up1(x3)
        x2 = self.up2(torch.cat([x2, x3], dim=1))
        return self.out(torch.cat([x1, x2], dim=1))


class ColorDown(nn.Module):
    def __init__(self, in_ch, out_ch, htan=False):
        super(ColorDown, self).__init__()
        self.d = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.Conv2d(out_ch, out_ch, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.BatchNorm2d(out_ch)
        )

    def forward(self, x):
        return self.d(x)


class ColorUp(nn.Module):
    def __init__(self, in_ch, out_ch, htan=False):
        super(ColorUp, self).__init__()
        self.u = nn.Sequential(
            nn.ConvTranspose2d(in_ch, out_ch, 4, 2, 1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.BatchNorm2d(out_ch)
        )

    def forward(self, x):
        return self.u(x)


class ColorOut(nn.Module):
    def __init__(self, in_ch, out_ch, out_last, htan=False):
        super(ColorOut, self).__init__()
        self.u = nn.Sequential(
            nn.ConvTranspose2d(in_ch, out_ch, 4, 2, 1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU() if not htan else nn.Hardtanh(),
            nn.Conv2d(out_ch, out_last, kernel_size=1, stride=1, padding=0),
        )

    def forward(self, x):
        return self.u(x)