MalumaDev commited on
Commit
6b03e26
·
verified ·
1 Parent(s): 230e6f6

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/paper_images.jpg filter=lfs diff=lfs merge=lfs -text
37
+ images/paper_images.pdf filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,55 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Deep Colorization modules for Medical Image Analysis
2
+
3
+
4
+ This project aims at bridging the gap between medical image analysis by introducing a light colorization module. Three different modules are proposed and implemented (DECONV, PixelShuffle and ColorU)
5
+
6
+
7
+ ![Modules](/images/MODULES.png)
8
+
9
+ The modules are trained jointly with a backbone pre-trained on ImageNet. A multi-stage transfer learning pipeline is summarized here.
10
+ First, the colorization module is trained from scratch together with the classifier, while the pre-trained CNN backbone is kept frozen, to learn the mapping which maximizes classification accuracy.
11
+ Then, the entire network is fine-tuned to learn useful features for the target task, while simultaneously adjusting the colorization mapping. The figure below shows the output of each colorization module when only the colorization module is trained, and after the entire network is fine-tuned.
12
+
13
+
14
+ ![Colorization](/images/paper_images.jpg)
15
+
16
+ ## Dependencies
17
+
18
+ + Linux
19
+ + Python 3.7
20
+ + PyTorch 1.4.0
21
+
22
+ ## Download
23
+
24
+ Trained models with DenseNet121 and ResNet18 backbones are available [here](https://drive.google.com/drive/folders/1uwLd-rzkt7Fcph6RqR1Eq41aTh85XGb-?usp=sharing)
25
+ A detailed list of models is available [here](README_FILES.md)
26
+
27
+ All models were trained on [CheXpert](https://stanfordmlgroup.github.io/competitions/chexpert/) to predict the presence/absence of 5 labels:
28
+ + Atelectasis
29
+ + Cardiomegaly
30
+ + Consolidation
31
+ + Edema
32
+ + Pleural Effusion
33
+
34
+
35
+ ## Image normalization
36
+ If you wish to use the above models, please bear in mind that images were normalized with statistics calculated on the CheXPert dataset:
37
+
38
+ + mean: [0.5028, 0.5028, 0.5028]
39
+ + std: [0.2902, 0.2902, 0.2902]
40
+
41
+
42
+ # Citation
43
+
44
+ If you use the models in your research, please cite our paper:
45
+
46
+ ```
47
+ @article{morra2020bridging,
48
+ title="Bridging the gap between Natural and Medical Images through Deep Colorization",
49
+ author="Morra, Lia and Piano, Luca and Lamberti, Fabrizio and Tommasi, Tatiana",
50
+ year="2020"
51
+ }
52
+ ```
53
+
54
+
55
+
colorization_modules.py ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging as log
2
+ import os
3
+ from pathlib import Path
4
+
5
+ import torch
6
+ import torchvision.transforms as transforms
7
+ import torchvision.models as models
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+ from enum import Enum
12
+
13
+
14
+ class AdvEnum(Enum):
15
+ @classmethod
16
+ def list(cls):
17
+ return list(map(lambda c: c.value, cls))
18
+
19
+ @classmethod
20
+ def list_name_value(cls):
21
+ return list(map(lambda c: (c.name, c.value), cls))
22
+
23
+
24
+ class DecoNetMode(AdvEnum):
25
+ FREEZE_DECO = 0
26
+ FREEZE_PTMODEL = 1
27
+ FREEZE_PTMODEL_NO_FC = 2
28
+ UNFREEZE_ALL = 3
29
+ FREEZE_ALL = 4
30
+ FREEZE_ALL_NO_FC = 5
31
+
32
+
33
+ class DecoType(AdvEnum):
34
+ NO = 0
35
+ DECONV = 1
36
+ RESIZE_CONV = 2
37
+ ColorUDECO = 16
38
+ PIXEL_SHUFFLE = 20
39
+
40
+
41
+ def get_deco_model(use_deco, out_deco) -> nn.Module:
42
+ if use_deco in [DecoType.DECONV, DecoType.DECONV_NORM]:
43
+ return StandardDECO(out_deco, deconv=True)
44
+ elif use_deco in [DecoType.RESIZE_CONV]:
45
+ return StandardDECO(out_deco, deconv=False)
46
+ elif use_deco is DecoType.PIXEL_SHUFFLE:
47
+ return PixelShuffle(out_deco, lrelu=False)
48
+ elif use_deco is DecoType.ColorUDECO:
49
+ return ColorUDECO(out_deco)
50
+ else:
51
+ raise ValueError("Module not found")
52
+
53
+
54
+ class PreTrainedModel(AdvEnum):
55
+ DENSENET_121 = 0
56
+ RESNET_18 = 1
57
+ RESNET_34 = 2
58
+ RESNET_50 = 3
59
+ VGG11 = 4
60
+ VGG11_BN = 5
61
+
62
+
63
+ def get_pt_model(model, output, pretrained=True):
64
+ input = 224
65
+ if not isinstance(model, PreTrainedModel):
66
+ model = PreTrainedModel(model)
67
+ pt_model = None
68
+ if model == PreTrainedModel.DENSENET_121:
69
+ pt_model = models.densenet121(pretrained=pretrained)
70
+ num_ftrs = pt_model.classifier.in_features
71
+ pt_model.classifier = nn.Linear(num_ftrs, output)
72
+ pt_model.last_layer_name = "classifier"
73
+ elif model == PreTrainedModel.RESNET_18:
74
+ pt_model = models.resnet18(pretrained=pretrained)
75
+ num_ftrs = pt_model.fc.in_features
76
+ pt_model.fc = nn.Linear(num_ftrs, output)
77
+ pt_model.last_layer_name = "fc"
78
+ elif model == PreTrainedModel.RESNET_34:
79
+ pt_model = models.resnet34(pretrained=pretrained)
80
+ num_ftrs = pt_model.fc.in_features
81
+ pt_model.fc = nn.Linear(num_ftrs, output)
82
+ pt_model.last_layer_name = "fc"
83
+ elif model == PreTrainedModel.RESNET_50:
84
+ pt_model = models.resnet50(pretrained=pretrained)
85
+ num_ftrs = pt_model.fc.in_features
86
+ pt_model.fc = nn.Linear(num_ftrs, output)
87
+ pt_model.last_layer_name = "fc"
88
+ elif model == PreTrainedModel.VGG11:
89
+ pt_model = models.vgg11(pretrained=pretrained)
90
+ num_ftrs = pt_model.classifier[6].in_features
91
+ pt_model.classifier[6] = nn.Linear(num_ftrs, output)
92
+ pt_model.last_layer_name = "classifier.6"
93
+ elif model == PreTrainedModel.VGG11_BN:
94
+ pt_model = models.vgg11_bn(pretrained=pretrained)
95
+ num_ftrs = pt_model.classifier[6].in_features
96
+ pt_model.classifier[6] = nn.Linear(num_ftrs, output)
97
+ pt_model.last_layer_name = "classifier.6"
98
+ else:
99
+ raise ValueError("Model not found")
100
+
101
+ return pt_model, input
102
+
103
+
104
+ class DecoNet(nn.Module):
105
+ """
106
+ Colorization module(optional)+Model
107
+ """
108
+
109
+ def __init__(self, output=14,
110
+ deco_type=DecoType.ColorUDECO,
111
+ pt_model=PreTrainedModel.RESNET_18,
112
+ pre_trained=True,
113
+ training_mode=DecoNetMode.FREEZE_PTMODEL_NO_FC,
114
+ use_aap=False):
115
+ super().__init__()
116
+ # Pre-trained Model
117
+ self.deco_type = deco_type
118
+ self.training_mode = training_mode
119
+ self.use_aap = use_aap
120
+ pt_model, self.out_deco = get_pt_model(pt_model, output, pre_trained)
121
+ self.last_layer_name = pt_model.last_layer_name
122
+ # DECO if needed
123
+ if self.deco_type is not DecoType.NO:
124
+ self.deco = get_deco_model(self.deco_type, self.out_deco)
125
+ else:
126
+ self.deco = None
127
+ self.pt_model = pt_model
128
+ self.set_mode(training_mode)
129
+
130
+ def set_mode(self, mode, print=True):
131
+ if not isinstance(mode, DecoNetMode):
132
+ mode = DecoNetMode(mode)
133
+ if mode == DecoNetMode.UNFREEZE_ALL:
134
+ for param in self.parameters():
135
+ param.requires_grad = True
136
+ elif mode == DecoNetMode.FREEZE_DECO:
137
+ self.set_mode(DecoNetMode.UNFREEZE_ALL, False)
138
+ for param in self.deco.parameters():
139
+ param.requires_grad = False
140
+ elif mode == DecoNetMode.FREEZE_PTMODEL:
141
+ self.set_mode(DecoNetMode.UNFREEZE_ALL, False)
142
+ for param in self.pt_model.parameters():
143
+ param.requires_grad = False
144
+ elif mode == DecoNetMode.FREEZE_PTMODEL_NO_FC:
145
+ self.set_mode(DecoNetMode.UNFREEZE_ALL, False)
146
+ for name, param in self.pt_model.named_parameters():
147
+ if self.last_layer_name not in name:
148
+ param.requires_grad = False
149
+ elif mode == DecoNetMode.FREEZE_ALL:
150
+ for param in self.parameters():
151
+ param.requires_grad = False
152
+ elif mode == DecoNetMode.FREEZE_ALL_NO_FC:
153
+ self.set_mode(DecoNetMode.FREEZE_ALL, False)
154
+ # Unfreeze last layer
155
+ for name, param in self.pt_model.named_parameters():
156
+ if self.last_layer_name in name:
157
+ param.requires_grad = True
158
+
159
+ if print:
160
+ log.info("#############################################")
161
+ log.info("PARAMETERS STATUS:")
162
+ for name, param in self.named_parameters():
163
+ log.info("{} : {}".format(name, param.requires_grad))
164
+ log.info("#############################################")
165
+
166
+ def get_layer_weight(self, sel_name: str = ""):
167
+ if sel_name == "":
168
+ sel_name = self.last_layer_name
169
+ res = []
170
+ for name, param in self.pt_model.named_parameters():
171
+ if sel_name in name:
172
+ res.append(param)
173
+
174
+ return res
175
+
176
+ def forward(self, xb):
177
+ """
178
+ @:param xb : tensor
179
+ Batch of input images
180
+
181
+ @:return tensor
182
+ A batch of output images
183
+ """
184
+ if self.deco is not None:
185
+ xb = self.deco(xb)
186
+ if self.use_aap:
187
+ xb = F.adaptive_avg_pool2d(xb, (self.out_deco, self.out_deco))
188
+ return self.pt_model(xb)
189
+
190
+ def clean_last_layer(self):
191
+ pt_model_type = self.pt_model
192
+
193
+ if pt_model_type == PreTrainedModel.VGG11_BN or pt_model_type == PreTrainedModel.VGG11:
194
+ self.pt_model.classifier[6].reset_parameters()
195
+ else:
196
+ last_layer_name = list(self.pt_model._modules)[-1]
197
+ self.pt_model._modules[last_layer_name].reset_parameters()
198
+
199
+ log.info("Last layer cleaned!")
200
+
201
+ def last_layer_size(self):
202
+ pt_model_type = self.pt_model
203
+ if pt_model_type == PreTrainedModel.VGG11_BN or pt_model_type == PreTrainedModel.VGG11:
204
+ return self.pt_model.classifier[6].weight.shape[-1]
205
+ else:
206
+ last_layer_name = list(self.pt_model._modules)[-1]
207
+ return self.pt_model._modules[last_layer_name].shape[-1]
208
+
209
+ def load_deco_state_dict(self, state_dict):
210
+ if self.deco is None:
211
+ self.deco = get_deco_model(self.deco_type, self.out_deco)
212
+ if hasattr(self.deco, "load_state_dict"):
213
+ self.deco.load_state_dict(state_dict)
214
+ else:
215
+ return False
216
+ self.set_mode(self.training_mode)
217
+ return True
218
+
219
+
220
+ def default_deco__weight_init(m):
221
+ if isinstance(m, nn.Conv2d):
222
+ # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
223
+ # m.weight.data.normal_(0, math.sqrt(2. / n))
224
+ torch.nn.init.xavier_uniform_(m.weight)
225
+ elif isinstance(m, nn.BatchNorm2d):
226
+ m.weight.data.fill_(1)
227
+ m.bias.data.zero_()
228
+
229
+
230
+ def bn_weight_init(m):
231
+ if isinstance(m, nn.BatchNorm2d):
232
+ m.weight.data.fill_(1)
233
+ m.bias.data.zero_()
234
+
235
+
236
+ class BaseDECO(nn.Module):
237
+ def __init__(self, out=224, init=None):
238
+ super().__init__()
239
+ self.out_s = out
240
+ self.init = init
241
+
242
+ def set_output_size(self, out_s):
243
+ self.out_s = out_s
244
+
245
+ def init_weights(self):
246
+ if self.init is None:
247
+ pass
248
+ elif self.init == 0:
249
+ self.apply(default_deco__weight_init)
250
+ elif self.init == 1:
251
+ self.apply(bn_weight_init)
252
+
253
+
254
+ class ResBlock(nn.Module):
255
+ def __init__(self, ni, nf=None, kernel=3, stride=1, padding=1):
256
+ super().__init__()
257
+ if nf is None:
258
+ nf = ni
259
+ self.conv1 = conv_layer(ni, nf, kernel=kernel, stride=stride, padding=padding)
260
+ self.conv2 = conv_layer(nf, nf, kernel=kernel, stride=stride, padding=padding)
261
+
262
+ def forward(self, x):
263
+ return x + self.conv2(self.conv1(x))
264
+
265
+
266
+ def conv_layer(in_layer, out_layer, kernel=3, stride=1, padding=1, instanceNorm=False):
267
+ return nn.Sequential(
268
+ nn.Conv2d(in_layer, out_layer, kernel_size=kernel, stride=stride, padding=padding),
269
+ nn.BatchNorm2d(out_layer) if not instanceNorm else nn.InstanceNorm2d(out_layer),
270
+ nn.LeakyReLU(inplace=True)
271
+ )
272
+
273
+
274
+ def _make_res_layers(nl, ni, kernel=3, stride=1, padding=1):
275
+ layers = []
276
+ for i in range(nl):
277
+ layers.append(ResBlock(ni, kernel=kernel, stride=stride, padding=padding))
278
+
279
+ return nn.Sequential(*layers)
280
+
281
+
282
+ class StandardDECO(BaseDECO):
283
+ """
284
+ Standard DECO Module
285
+ """
286
+
287
+ def __init__(self, out=224, init=0, deconv=False):
288
+ super().__init__(out, init)
289
+ self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=2)
290
+ self.bn1 = nn.BatchNorm2d(64)
291
+ # ReLU
292
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
293
+ self.resblocks = _make_res_layers(8, 64)
294
+ self.conv_last = nn.Conv2d(64, 3, kernel_size=1)
295
+ self.deconv = deconv
296
+ if deconv:
297
+ # TODO: Check if use "groups = 1"
298
+ self.deconv = nn.ConvTranspose2d(in_channels=3, out_channels=3, kernel_size=8, padding=2, stride=4,
299
+ groups=3, bias=False)
300
+ else:
301
+ self.pad = nn.ReflectionPad2d(1)
302
+ self.conv_up = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0, stride=1)
303
+
304
+ self.init_weights()
305
+
306
+ def forward(self, xb):
307
+ """
308
+ @:param xb : Tensor
309
+ Batch of input images
310
+
311
+ @:return tensor
312
+ A batch of output images
313
+ """
314
+ _xb = self.maxpool(F.leaky_relu(self.bn1(self.conv1(xb))))
315
+ _xb = self.resblocks(_xb)
316
+ _xb = self.conv_last(_xb)
317
+ if self.deconv:
318
+ _xb = self.deconv(_xb, output_size=xb.shape)
319
+ else:
320
+ _xb = self.conv_up(self.pad(F.interpolate(_xb, scale_factor=4, mode='nearest')))
321
+ return _xb
322
+
323
+
324
+ def icnr(x, scale=4, init=nn.init.kaiming_normal_):
325
+ """ ICNR init of `x`, with `scale` and `init` function.
326
+
327
+ Checkerboard artifact free sub-pixel convolution: https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
328
+ """
329
+ ni, nf, h, w = x.shape
330
+ ni2 = int(ni / (scale ** 2))
331
+ k = init(torch.zeros([ni2, nf, h, w])).transpose(0, 1)
332
+ k = k.contiguous().view(ni2, nf, -1)
333
+ k = k.repeat(1, 1, scale ** 2)
334
+ k = k.contiguous().view([nf, ni, h, w]).transpose(0, 1)
335
+ x.data.copy_(k)
336
+
337
+
338
+ class PixelShuffle_ICNR(nn.Module):
339
+ """ Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init,
340
+ and `weight_norm`.
341
+
342
+ "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts":
343
+ https://arxiv.org/abs/1806.02658
344
+ """
345
+
346
+ def __init__(self, ni: int, nf: int = None, scale: int = 4, icnr_init=True, blur_k=2, blur_s=1,
347
+ blur_pad=(1, 0, 1, 0), lrelu=True):
348
+ super().__init__()
349
+ nf = ni if nf is None else nf
350
+ self.conv = conv_layer(ni, nf * (scale ** 2), kernel=1, padding=0, stride=1) if lrelu else nn.Sequential(
351
+ nn.Conv2d(64, 3 * (scale ** 2), 1, 1, 0), nn.BatchNorm2d(3 * (scale ** 2)))
352
+ if icnr_init:
353
+ icnr(self.conv[0].weight, scale=scale)
354
+ self.act = nn.LeakyReLU(inplace=False) if lrelu else nn.Hardtanh(-10000, 10000)
355
+ self.shuf = nn.PixelShuffle(scale)
356
+ # Blurring over (h*w) kernel
357
+ self.pad = nn.ReplicationPad2d(blur_pad)
358
+ self.blur = nn.AvgPool2d(blur_k, stride=blur_s)
359
+
360
+ def forward(self, x):
361
+ x = self.shuf(self.act(self.conv(x)))
362
+ return self.blur(self.pad(x))
363
+
364
+
365
+ class PixelShuffle(BaseDECO):
366
+ """
367
+ PixelShuffle Module
368
+ """
369
+
370
+ def __init__(self, out=224, init=1, scale=4, lrelu=False):
371
+ super().__init__(out, init)
372
+ # Which value should I use for stride and padding?
373
+ self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=2)
374
+ self.bn1 = nn.BatchNorm2d(64)
375
+ self.act1 = nn.LeakyReLU()
376
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
377
+ self.resblocks = _make_res_layers(8, 64)
378
+ self.pixel_shuffle = PixelShuffle_ICNR(ni=64, nf=3, scale=scale, lrelu=lrelu)
379
+ self.init_weights()
380
+
381
+ def forward(self, xb):
382
+ """
383
+ @:param xb : Tensor
384
+ Batch of input images
385
+
386
+ @:return tensor
387
+ A batch of output images
388
+ """
389
+ _xb = self.maxpool(self.act1(self.bn1(self.conv1(xb))))
390
+ _xb = self.resblocks(_xb)
391
+
392
+ return self.pixel_shuffle(_xb)
393
+
394
+
395
+ class ColorUDECO(BaseDECO):
396
+ """
397
+ ColorUDECO Module
398
+ """
399
+
400
+ def __init__(self, out=224, init=0, in_ch=1, out_ch=3):
401
+ super().__init__(out, init)
402
+ self.dw1 = ColorDown(in_ch, 16)
403
+ self.dw2 = ColorDown(16, 32)
404
+ self.dw3 = ColorDown(32, 64)
405
+ self.up1 = ColorUp(64, 32)
406
+ self.up2 = ColorUp(64, 16)
407
+ self.out = ColorOut(32, 16, out_ch)
408
+
409
+ def forward(self, x1):
410
+ """
411
+ @:param x1 : Tensor
412
+ Batch of input images
413
+
414
+ @:return tensor
415
+ A batch of output images
416
+ """
417
+ x1 = self.dw1(x1)
418
+ x2 = self.dw2(x1)
419
+ x3 = self.dw3(x2)
420
+ x3 = self.up1(x3)
421
+ x2 = self.up2(torch.cat([x2, x3], dim=1))
422
+ return self.out(torch.cat([x1, x2], dim=1))
423
+
424
+
425
+ class ColorDown(nn.Module):
426
+ def __init__(self, in_ch, out_ch, htan=False):
427
+ super(ColorDown, self).__init__()
428
+ self.d = nn.Sequential(
429
+ nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
430
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
431
+ nn.Conv2d(out_ch, out_ch, kernel_size=4, stride=2, padding=1),
432
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
433
+ nn.BatchNorm2d(out_ch)
434
+ )
435
+
436
+ def forward(self, x):
437
+ return self.d(x)
438
+
439
+
440
+ class ColorUp(nn.Module):
441
+ def __init__(self, in_ch, out_ch, htan=False):
442
+ super(ColorUp, self).__init__()
443
+ self.u = nn.Sequential(
444
+ nn.ConvTranspose2d(in_ch, out_ch, 4, 2, 1),
445
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
446
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
447
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
448
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
449
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
450
+ nn.BatchNorm2d(out_ch)
451
+ )
452
+
453
+ def forward(self, x):
454
+ return self.u(x)
455
+
456
+
457
+ class ColorOut(nn.Module):
458
+ def __init__(self, in_ch, out_ch, out_last, htan=False):
459
+ super(ColorOut, self).__init__()
460
+ self.u = nn.Sequential(
461
+ nn.ConvTranspose2d(in_ch, out_ch, 4, 2, 1),
462
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
463
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
464
+ nn.LeakyReLU() if not htan else nn.Hardtanh(),
465
+ nn.Conv2d(out_ch, out_last, kernel_size=1, stride=1, padding=0),
466
+ )
467
+
468
+ def forward(self, x):
469
+ return self.u(x)
images/MODULES.png ADDED
images/empty ADDED
@@ -0,0 +1 @@
 
 
1
+
images/paper_images.jpg ADDED

Git LFS Details

  • SHA256: 3125f2ad1d93ccb5132f9085bc9e30f3b6435449f7c9c0d6544e3d2c2767ccca
  • Pointer size: 132 Bytes
  • Size of remote file: 2.7 MB
images/paper_images.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d46d8be627e5d96c592be306e9c74b91a2412cbbc05bead81e3a12082915b89
3
+ size 1271680