N2.1-Eye-1.3B / README.md
FlameF0X's picture
Update README.md
71e64eb verified
---
license: mit
language:
- en
base_model:
- LiquidAI/LFM2-1.2B
- openai/clip-vit-base-patch32
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- merge
datasets:
- crag-mm-2025/crag-mm-multi-turn-public
new_version: GoofyLM/N2.2-Eye-1.3B
---
# N2-Eye: Multimodal Conversational AI
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6615494716917dfdc645c44e/gq_R1hx5UTDiSns2gUzJ2.png)
N2-Eye is a multimodal language model that combines the power of LiquidAI's LFM2-1.2B language model with OpenAI's CLIP vision encoder to enable image understanding and conversation capabilities.
## Model Details
- **Base Language Model**: LiquidAI/LFM2-1.2B (1.26B parameters)
- **Vision Encoder**: OpenAI CLIP-ViT-Base-Patch32
- **Model Type**: Image-Text-to-Text (Multimodal Conversational)
- **Training Dataset**: CRAG-MM Multi-Turn Public Dataset
- **License**: MIT
- **Framework**: PyTorch + Transformers
## Architecture
N2-Eye uses a modular architecture that combines:
1. **Language Model**: LFM2-1.2B for text generation and conversation
2. **Vision Encoder**: CLIP for image understanding (frozen during training)
3. **Projection Layer**: A trainable MLP that maps CLIP features to the language model's embedding space
The model processes images by:
- Encoding images with CLIP to extract visual features
- Projecting these features through a learnable projection layer
- Integrating projected features into the language model at special `<image>` token positions
## Training Details
### Dataset
- **Source**: CRAG-MM Multi-Turn Public Dataset (v0.1.1)
- **Format**: Multi-turn conversations with images
- **Preprocessing**: Conversations formatted with ChatML-style tokens
### Training Configuration
- **Batch Size**: 2 per device (with gradient accumulation steps: 4)
- **Learning Rate**: 2e-5
- **Training Length**: 1 epoch on validation split
- **Precision**: bfloat16
- **Max Sequence Length**: 2048 tokens
- **Optimization**: Gradient checkpointing enabled
### Special Tokens
- `<image>`: Placeholder for image embeddings in conversation
- System prompt: "You are a helpful assistant trained by Liquid AI. You can see and understand images."
## Usage
### Basic Inference
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("GoofyLM/N2.1-Eye-1.3B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GoofyLM/N2.1-Eye-1.3B", trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
{"type": "text", "text": "What animal is on the candy?"}
]
},
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
```
### Chat Template
N2-Eye uses an advanced ChatML-based format with support for tools and multimodal content. The model includes a sophisticated Jinja2 template that handles:
- **System prompts**: Automatically formatted with `<|im_start|>system` tags
- **Tool integration**: Special `<|tool_list_start|>` and `<|tool_list_end|>` markers for tool definitions
- **Tool responses**: Wrapped with `<|tool_response_start|>` and `<|tool_response_end|>` markers
- **Multimodal content**: JSON serialization for complex message content including images
Basic conversation format:
```
<|im_start|>system
You are a helpful assistant trained by Liquid AI. You can see and understand images.<|im_end|>
<image>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
{assistant_response}<|im_end|>
```
For tool-enabled conversations:
```
<|im_start|>system
{system_prompt}
List of tools: <|tool_list_start|>[{tool_definitions}]<|tool_list_end|><|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
{assistant_response}<|im_end|>
<|im_start|>tool
<|tool_response_start|>{tool_output}<|tool_response_end|><|im_end|>
```
## Capabilities
N2-Eye can:
- **Visual Understanding**: Understand and describe images in detail
- **Visual Q&A**: Answer questions about visual content
- **Multi-turn Conversations**: Engage in extended conversations that reference images
- **Tool Integration**: Support for tool calling and structured responses
- **Multimodal Reasoning**: Combine visual and textual information for comprehensive responses
- **Structured Output**: Handle complex message formats including JSON content
## Limitations
- **Image Token Handling**: Requires specific placement of `<image>` tokens in conversation format
- **Single Image**: Currently optimized for single image per conversation
- **Training Scale**: Trained on a limited dataset (validation split only)
- **Frozen Vision**: CLIP encoder is frozen, limiting adaptation to new visual domains
## Technical Implementation
### Model Architecture Classes
The implementation includes several key components:
1. **MultimodalLFM2Model**: Main model class combining language and vision
2. **CRAGMMDataset**: Dataset handler for CRAG-MM format
3. **MultimodalTrainer**: Custom trainer for multimodal inputs
### Key Features
- **Gradient Checkpointing**: Memory-efficient training
- **Custom Collation**: Handles multimodal batch processing
- **Flexible Image Integration**: Dynamic matching of image features to token positions
- **Safe Serialization**: Custom saving to handle shared tensors
## Requirements
```
torch
transformers
datasets
Pillow
clip-by-openai
```
## Training Your Own Version
To retrain or fine-tune N2-Eye:
1. Install dependencies
2. Prepare your dataset in CRAG-MM format
3. Modify configuration in the training script
4. Run the training pipeline
See the included training script for complete implementation details.
## Citation
If you use N2-Eye in your research, please cite:
```bibtex
@misc{n2eye2025,
title={N2-Eye: Multimodal Conversational AI},
author={GoofyLM Lab},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/GoofyLM/N2-Eye-v1-1.3B}}
}
```
## Acknowledgments
- **LiquidAI** for the LFM2-1.2B base model
- **OpenAI** for the CLIP vision encoder
- **CRAG-MM** dataset contributors for training data
- **Hugging Face** for the transformers library and model hosting
## License
This model is released under the MIT License. See the LICENSE file for details.