MoE-StrangeMerges-2x7B
MoE-StrangeMerges-2x7B is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
🧩 Configuration
base_model: Gille/StrangeMerges_9-7B-dare_ties
gate_mode: cheap_embed
dtype: float16
experts:
- source_model: Gille/StrangeMerges_9-7B-dare_ties
positive_prompts: ["science, logic, math"]
- source_model: Gille/StrangeMerges_8-7B-slerp
positive_prompts: ["reasoning, numbers, abstract"]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/MoE-StrangeMerges-2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.34 |
AI2 Reasoning Challenge (25-Shot) | 70.82 |
HellaSwag (10-Shot) | 87.83 |
MMLU (5-Shot) | 65.04 |
TruthfulQA (0-shot) | 65.86 |
Winogrande (5-shot) | 82.79 |
GSM8k (5-shot) | 67.70 |
- Downloads last month
- 80
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Gille/MoE-StrangeMerges-2x7B
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard70.820
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard87.830
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.040
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard65.860
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.790
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard67.700