gravlens-grayscale
This is a full rank finetune derived from kwai-kolors/kolors-diffusers.
The main validation prompt used during training was:
gravitational lensing effects on galaxy
Validation settings
- CFG:
5.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
512x512
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- gravitational lensing effects on galaxy
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 6750
- Learning rate: 1e-06
- Learning rate schedule: constant
- Warmup steps: 675
- Max grad norm: 2.0
- Effective batch size: 8
- Micro-batch size: 8
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: optimi-lion
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
Datasets
grayscale-lensing-256
- Repeats: 15
- Total number of images: 3689
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
grayscale-lensing-512
- Repeats: 15
- Total number of images: 1801
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'GazTrab/gravlens-grayscale'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) # loading directly in bf16
prompt = "gravitational lensing effects on galaxy"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=512,
height=512,
guidance_scale=5.0,
guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 0