GaniduA commited on
Commit
2a04ef4
·
verified ·
1 Parent(s): 2bb4b46

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:34969
8
+ - loss:CosineSimilarityLoss
9
+ base_model: BAAI/bge-base-en-v1.5
10
+ widget:
11
+ - source_sentence: Describe the role of the cell wall in plant cells.
12
+ sentences:
13
+ - During the Battle of Hastings in 1066, the cell wall played a crucial role in
14
+ the Norman conquest of England, helping King William to fortify his defenses and
15
+ secure victory.
16
+ - The relative atomic mass of oxygen is 16.
17
+ - Solid-state electrolytes in batteries offer advantages like improved safety, higher
18
+ energy density, longer cycle life, and the potential for flexible and lightweight
19
+ designs, making them suitable for advanced energy storage applications.
20
+ - source_sentence: How does the rate of change of the magnetic field affect the induced
21
+ voltage?
22
+ sentences:
23
+ - Pancreatic juice contains trypsin (digests proteins), amylase (digests starch),
24
+ and lipase (digests lipids), aiding in the chemical breakdown of food in the small
25
+ intestine.
26
+ - The Great Wall of China is a historic fortification built to protect against invasions
27
+ and raids from nomadic groups.
28
+ - In episode six, the dragon finally learns to fly over the kingdom, spreading its
29
+ wings wide.
30
+ - source_sentence: How does acute renal failure differ from chronic renal failure?
31
+ sentences:
32
+ - diaphragm / ribs
33
+ - A popular myth is that carrots improve night vision because they contain vitamin
34
+ A, which is vital for eye health, but the story was exaggerated during World War
35
+ II to cover military technology advancements.
36
+ - An endoscope is a traditional Scottish musical instrument that is played with
37
+ a set of bagpipes during cultural festivals.
38
+ - source_sentence: What is the molar mass of ammonium chloride (NH₄Cl)?
39
+ sentences:
40
+ - The capital of France is Paris, known for its iconic Eiffel Tower and rich cultural
41
+ heritage.
42
+ - The molar mass of NH₄Cl is 53.5 g/mol.
43
+ - 3. Al2O3
44
+ - source_sentence: Discuss the principles and process of electrolysis, including the
45
+ conventions adopted in electrolysis.
46
+ sentences:
47
+ - The invention of the first airplane by the Wright brothers took place in 1903
48
+ in Kitty Hawk, North Carolina.
49
+ - In the movie 'Inception', directed by Christopher Nolan, the plot revolves around
50
+ a skilled thief who is given a chance at redemption if he can successfully perform
51
+ inception by planting an idea into someone's subconscious.
52
+ - The development of artificial intelligence has significantly impacted the tech
53
+ industry, leading to advancements in machine learning and natural language processing.
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - cosine_accuracy
58
+ - cosine_accuracy_threshold
59
+ - cosine_f1
60
+ - cosine_f1_threshold
61
+ - cosine_precision
62
+ - cosine_recall
63
+ - cosine_ap
64
+ - cosine_mcc
65
+ model-index:
66
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
67
+ results:
68
+ - task:
69
+ type: binary-classification
70
+ name: Binary Classification
71
+ dataset:
72
+ name: eval
73
+ type: eval
74
+ metrics:
75
+ - type: cosine_accuracy
76
+ value: 1.0
77
+ name: Cosine Accuracy
78
+ - type: cosine_accuracy_threshold
79
+ value: 0.057119220495224
80
+ name: Cosine Accuracy Threshold
81
+ - type: cosine_f1
82
+ value: 1.0
83
+ name: Cosine F1
84
+ - type: cosine_f1_threshold
85
+ value: 0.057119220495224
86
+ name: Cosine F1 Threshold
87
+ - type: cosine_precision
88
+ value: 1.0
89
+ name: Cosine Precision
90
+ - type: cosine_recall
91
+ value: 1.0
92
+ name: Cosine Recall
93
+ - type: cosine_ap
94
+ value: 1.0
95
+ name: Cosine Ap
96
+ - type: cosine_mcc
97
+ value: 1.0
98
+ name: Cosine Mcc
99
+ ---
100
+
101
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
102
+
103
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
104
+
105
+ ## Model Details
106
+
107
+ ### Model Description
108
+ - **Model Type:** Sentence Transformer
109
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
110
+ - **Maximum Sequence Length:** 512 tokens
111
+ - **Output Dimensionality:** 768 dimensions
112
+ - **Similarity Function:** Cosine Similarity
113
+ <!-- - **Training Dataset:** Unknown -->
114
+ <!-- - **Language:** Unknown -->
115
+ <!-- - **License:** Unknown -->
116
+
117
+ ### Model Sources
118
+
119
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
120
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
121
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
122
+
123
+ ### Full Model Architecture
124
+
125
+ ```
126
+ SentenceTransformer(
127
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
128
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
129
+ )
130
+ ```
131
+
132
+ ## Usage
133
+
134
+ ### Direct Usage (Sentence Transformers)
135
+
136
+ First install the Sentence Transformers library:
137
+
138
+ ```bash
139
+ pip install -U sentence-transformers
140
+ ```
141
+
142
+ Then you can load this model and run inference.
143
+ ```python
144
+ from sentence_transformers import SentenceTransformer
145
+
146
+ # Download from the 🤗 Hub
147
+ model = SentenceTransformer("GaniduA/bge-finetuned-olscience")
148
+ # Run inference
149
+ sentences = [
150
+ 'Discuss the principles and process of electrolysis, including the conventions adopted in electrolysis.',
151
+ 'The development of artificial intelligence has significantly impacted the tech industry, leading to advancements in machine learning and natural language processing.',
152
+ "In the movie 'Inception', directed by Christopher Nolan, the plot revolves around a skilled thief who is given a chance at redemption if he can successfully perform inception by planting an idea into someone's subconscious.",
153
+ ]
154
+ embeddings = model.encode(sentences)
155
+ print(embeddings.shape)
156
+ # [3, 768]
157
+
158
+ # Get the similarity scores for the embeddings
159
+ similarities = model.similarity(embeddings, embeddings)
160
+ print(similarities.shape)
161
+ # [3, 3]
162
+ ```
163
+
164
+ <!--
165
+ ### Direct Usage (Transformers)
166
+
167
+ <details><summary>Click to see the direct usage in Transformers</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Downstream Usage (Sentence Transformers)
174
+
175
+ You can finetune this model on your own dataset.
176
+
177
+ <details><summary>Click to expand</summary>
178
+
179
+ </details>
180
+ -->
181
+
182
+ <!--
183
+ ### Out-of-Scope Use
184
+
185
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
186
+ -->
187
+
188
+ ## Evaluation
189
+
190
+ ### Metrics
191
+
192
+ #### Binary Classification
193
+
194
+ * Dataset: `eval`
195
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
196
+
197
+ | Metric | Value |
198
+ |:--------------------------|:--------|
199
+ | cosine_accuracy | 1.0 |
200
+ | cosine_accuracy_threshold | 0.0571 |
201
+ | cosine_f1 | 1.0 |
202
+ | cosine_f1_threshold | 0.0571 |
203
+ | cosine_precision | 1.0 |
204
+ | cosine_recall | 1.0 |
205
+ | **cosine_ap** | **1.0** |
206
+ | cosine_mcc | 1.0 |
207
+
208
+ <!--
209
+ ## Bias, Risks and Limitations
210
+
211
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
212
+ -->
213
+
214
+ <!--
215
+ ### Recommendations
216
+
217
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
218
+ -->
219
+
220
+ ## Training Details
221
+
222
+ ### Training Dataset
223
+
224
+ #### Unnamed Dataset
225
+
226
+ * Size: 34,969 training samples
227
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
228
+ * Approximate statistics based on the first 1000 samples:
229
+ | | sentence_0 | sentence_1 | label |
230
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
231
+ | type | string | string | float |
232
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.43 tokens</li><li>max: 209 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 25.94 tokens</li><li>max: 335 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.25</li><li>max: 1.0</li></ul> |
233
+ * Samples:
234
+ | sentence_0 | sentence_1 | label |
235
+ |:------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
236
+ | <code>How does the reaction of zinc with copper sulfate demonstrate a single displacement reaction?</code> | <code>Julius Caesar crossed the Rubicon River in 49 BC, which led to a chain of events culminating in the Roman Civil War.</code> | <code>0.0</code> |
237
+ | <code>How do you investigate the effect of tightening a screw on the moment of force required to rotate a stick?</code> | <code>Explore the depths of the ocean with a team of deep-sea divers searching for mythical sea creatures and undiscovered shipwrecks.</code> | <code>0.0</code> |
238
+ | <code>Describe the operation of a photodiode in optical sensing.</code> | <code>A photodiode converts light into an electrical current by generating electron-hole pairs when exposed to light, used in optical sensing and communication applications.</code> | <code>1.0</code> |
239
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
240
+ ```json
241
+ {
242
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
243
+ }
244
+ ```
245
+
246
+ ### Training Hyperparameters
247
+ #### Non-Default Hyperparameters
248
+
249
+ - `eval_strategy`: steps
250
+ - `per_device_train_batch_size`: 64
251
+ - `per_device_eval_batch_size`: 64
252
+ - `num_train_epochs`: 2
253
+ - `fp16`: True
254
+ - `multi_dataset_batch_sampler`: round_robin
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 64
264
+ - `per_device_eval_batch_size`: 64
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `torch_empty_cache_steps`: None
270
+ - `learning_rate`: 5e-05
271
+ - `weight_decay`: 0.0
272
+ - `adam_beta1`: 0.9
273
+ - `adam_beta2`: 0.999
274
+ - `adam_epsilon`: 1e-08
275
+ - `max_grad_norm`: 1
276
+ - `num_train_epochs`: 2
277
+ - `max_steps`: -1
278
+ - `lr_scheduler_type`: linear
279
+ - `lr_scheduler_kwargs`: {}
280
+ - `warmup_ratio`: 0.0
281
+ - `warmup_steps`: 0
282
+ - `log_level`: passive
283
+ - `log_level_replica`: warning
284
+ - `log_on_each_node`: True
285
+ - `logging_nan_inf_filter`: True
286
+ - `save_safetensors`: True
287
+ - `save_on_each_node`: False
288
+ - `save_only_model`: False
289
+ - `restore_callback_states_from_checkpoint`: False
290
+ - `no_cuda`: False
291
+ - `use_cpu`: False
292
+ - `use_mps_device`: False
293
+ - `seed`: 42
294
+ - `data_seed`: None
295
+ - `jit_mode_eval`: False
296
+ - `use_ipex`: False
297
+ - `bf16`: False
298
+ - `fp16`: True
299
+ - `fp16_opt_level`: O1
300
+ - `half_precision_backend`: auto
301
+ - `bf16_full_eval`: False
302
+ - `fp16_full_eval`: False
303
+ - `tf32`: None
304
+ - `local_rank`: 0
305
+ - `ddp_backend`: None
306
+ - `tpu_num_cores`: None
307
+ - `tpu_metrics_debug`: False
308
+ - `debug`: []
309
+ - `dataloader_drop_last`: False
310
+ - `dataloader_num_workers`: 0
311
+ - `dataloader_prefetch_factor`: None
312
+ - `past_index`: -1
313
+ - `disable_tqdm`: False
314
+ - `remove_unused_columns`: True
315
+ - `label_names`: None
316
+ - `load_best_model_at_end`: False
317
+ - `ignore_data_skip`: False
318
+ - `fsdp`: []
319
+ - `fsdp_min_num_params`: 0
320
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
321
+ - `tp_size`: 0
322
+ - `fsdp_transformer_layer_cls_to_wrap`: None
323
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
324
+ - `deepspeed`: None
325
+ - `label_smoothing_factor`: 0.0
326
+ - `optim`: adamw_torch
327
+ - `optim_args`: None
328
+ - `adafactor`: False
329
+ - `group_by_length`: False
330
+ - `length_column_name`: length
331
+ - `ddp_find_unused_parameters`: None
332
+ - `ddp_bucket_cap_mb`: None
333
+ - `ddp_broadcast_buffers`: False
334
+ - `dataloader_pin_memory`: True
335
+ - `dataloader_persistent_workers`: False
336
+ - `skip_memory_metrics`: True
337
+ - `use_legacy_prediction_loop`: False
338
+ - `push_to_hub`: False
339
+ - `resume_from_checkpoint`: None
340
+ - `hub_model_id`: None
341
+ - `hub_strategy`: every_save
342
+ - `hub_private_repo`: None
343
+ - `hub_always_push`: False
344
+ - `gradient_checkpointing`: False
345
+ - `gradient_checkpointing_kwargs`: None
346
+ - `include_inputs_for_metrics`: False
347
+ - `include_for_metrics`: []
348
+ - `eval_do_concat_batches`: True
349
+ - `fp16_backend`: auto
350
+ - `push_to_hub_model_id`: None
351
+ - `push_to_hub_organization`: None
352
+ - `mp_parameters`:
353
+ - `auto_find_batch_size`: False
354
+ - `full_determinism`: False
355
+ - `torchdynamo`: None
356
+ - `ray_scope`: last
357
+ - `ddp_timeout`: 1800
358
+ - `torch_compile`: False
359
+ - `torch_compile_backend`: None
360
+ - `torch_compile_mode`: None
361
+ - `dispatch_batches`: None
362
+ - `split_batches`: None
363
+ - `include_tokens_per_second`: False
364
+ - `include_num_input_tokens_seen`: False
365
+ - `neftune_noise_alpha`: None
366
+ - `optim_target_modules`: None
367
+ - `batch_eval_metrics`: False
368
+ - `eval_on_start`: False
369
+ - `use_liger_kernel`: False
370
+ - `eval_use_gather_object`: False
371
+ - `average_tokens_across_devices`: False
372
+ - `prompts`: None
373
+ - `batch_sampler`: batch_sampler
374
+ - `multi_dataset_batch_sampler`: round_robin
375
+
376
+ </details>
377
+
378
+ ### Training Logs
379
+ | Epoch | Step | Training Loss | eval_cosine_ap |
380
+ |:------:|:----:|:-------------:|:--------------:|
381
+ | 0.0366 | 20 | - | 0.9892 |
382
+ | 0.0731 | 40 | - | 0.9978 |
383
+ | 0.1097 | 60 | - | 0.9989 |
384
+ | 0.1463 | 80 | - | 0.9997 |
385
+ | 0.1828 | 100 | - | 0.9999 |
386
+ | 0.2194 | 120 | - | 0.9998 |
387
+ | 0.2559 | 140 | - | 0.9998 |
388
+ | 0.2925 | 160 | - | 0.9998 |
389
+ | 0.3291 | 180 | - | 0.9998 |
390
+ | 0.3656 | 200 | - | 0.9999 |
391
+ | 0.4022 | 220 | - | 0.9998 |
392
+ | 0.4388 | 240 | - | 0.9999 |
393
+ | 0.4753 | 260 | - | 1.0000 |
394
+ | 0.5119 | 280 | - | 1.0000 |
395
+ | 0.5484 | 300 | - | 1.0000 |
396
+ | 0.5850 | 320 | - | 1.0000 |
397
+ | 0.6216 | 340 | - | 1.0000 |
398
+ | 0.6581 | 360 | - | 1.0000 |
399
+ | 0.6947 | 380 | - | 1.0 |
400
+ | 0.7313 | 400 | - | 1.0000 |
401
+ | 0.7678 | 420 | - | 1.0 |
402
+ | 0.8044 | 440 | - | 1.0 |
403
+ | 0.8410 | 460 | - | 1.0000 |
404
+ | 0.8775 | 480 | - | 1.0 |
405
+ | 0.9141 | 500 | 0.0199 | 1.0000 |
406
+ | 0.9506 | 520 | - | 1.0 |
407
+ | 0.9872 | 540 | - | 1.0000 |
408
+ | 1.0 | 547 | - | 1.0000 |
409
+ | 1.0238 | 560 | - | 1.0000 |
410
+ | 1.0603 | 580 | - | 1.0000 |
411
+ | 1.0969 | 600 | - | 1.0000 |
412
+ | 1.1335 | 620 | - | 1.0000 |
413
+ | 1.1700 | 640 | - | 1.0 |
414
+ | 1.2066 | 660 | - | 1.0000 |
415
+ | 1.2431 | 680 | - | 1.0000 |
416
+ | 1.2797 | 700 | - | 1.0000 |
417
+ | 1.3163 | 720 | - | 1.0000 |
418
+ | 1.3528 | 740 | - | 1.0000 |
419
+ | 1.3894 | 760 | - | 1.0 |
420
+ | 1.4260 | 780 | - | 1.0 |
421
+ | 1.4625 | 800 | - | 1.0000 |
422
+ | 1.4991 | 820 | - | 1.0 |
423
+ | 1.5356 | 840 | - | 1.0000 |
424
+ | 1.5722 | 860 | - | 1.0000 |
425
+ | 1.6088 | 880 | - | 1.0 |
426
+ | 1.6453 | 900 | - | 1.0 |
427
+ | 1.6819 | 920 | - | 1.0 |
428
+ | 1.7185 | 940 | - | 1.0000 |
429
+ | 1.7550 | 960 | - | 1.0000 |
430
+ | 1.7916 | 980 | - | 1.0000 |
431
+ | 1.8282 | 1000 | 0.0012 | 1.0000 |
432
+ | 1.8647 | 1020 | - | 1.0 |
433
+ | 1.9013 | 1040 | - | 1.0 |
434
+ | 1.9378 | 1060 | - | 1.0 |
435
+ | 1.9744 | 1080 | - | 1.0 |
436
+ | 2.0 | 1094 | - | 1.0 |
437
+
438
+
439
+ ### Framework Versions
440
+ - Python: 3.11.11
441
+ - Sentence Transformers: 3.4.1
442
+ - Transformers: 4.50.3
443
+ - PyTorch: 2.6.0+cu124
444
+ - Accelerate: 1.5.2
445
+ - Datasets: 3.5.0
446
+ - Tokenizers: 0.21.1
447
+
448
+ ## Citation
449
+
450
+ ### BibTeX
451
+
452
+ #### Sentence Transformers
453
+ ```bibtex
454
+ @inproceedings{reimers-2019-sentence-bert,
455
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
456
+ author = "Reimers, Nils and Gurevych, Iryna",
457
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
458
+ month = "11",
459
+ year = "2019",
460
+ publisher = "Association for Computational Linguistics",
461
+ url = "https://arxiv.org/abs/1908.10084",
462
+ }
463
+ ```
464
+
465
+ <!--
466
+ ## Glossary
467
+
468
+ *Clearly define terms in order to be accessible across audiences.*
469
+ -->
470
+
471
+ <!--
472
+ ## Model Card Authors
473
+
474
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
475
+ -->
476
+
477
+ <!--
478
+ ## Model Card Contact
479
+
480
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
481
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.50.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.50.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fd7f35747c68f8feaed588ac80862852b672c6a22770ae4ccacebce6dc5a2c2
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff