SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("GaniduA/bge-finetuned-olscience")
# Run inference
sentences = [
'Discuss the principles and process of electrolysis, including the conventions adopted in electrolysis.',
'The development of artificial intelligence has significantly impacted the tech industry, leading to advancements in machine learning and natural language processing.',
"In the movie 'Inception', directed by Christopher Nolan, the plot revolves around a skilled thief who is given a chance at redemption if he can successfully perform inception by planting an idea into someone's subconscious.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
eval
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
cosine_accuracy_threshold | 0.0571 |
cosine_f1 | 1.0 |
cosine_f1_threshold | 0.0571 |
cosine_precision | 1.0 |
cosine_recall | 1.0 |
cosine_ap | 1.0 |
cosine_mcc | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 34,969 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 17.43 tokens
- max: 209 tokens
- min: 3 tokens
- mean: 25.94 tokens
- max: 335 tokens
- min: 0.0
- mean: 0.25
- max: 1.0
- Samples:
sentence_0 sentence_1 label How does the reaction of zinc with copper sulfate demonstrate a single displacement reaction?
Julius Caesar crossed the Rubicon River in 49 BC, which led to a chain of events culminating in the Roman Civil War.
0.0
How do you investigate the effect of tightening a screw on the moment of force required to rotate a stick?
Explore the depths of the ocean with a team of deep-sea divers searching for mythical sea creatures and undiscovered shipwrecks.
0.0
Describe the operation of a photodiode in optical sensing.
A photodiode converts light into an electrical current by generating electron-hole pairs when exposed to light, used in optical sensing and communication applications.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 2fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_cosine_ap |
---|---|---|---|
0.0366 | 20 | - | 0.9892 |
0.0731 | 40 | - | 0.9978 |
0.1097 | 60 | - | 0.9989 |
0.1463 | 80 | - | 0.9997 |
0.1828 | 100 | - | 0.9999 |
0.2194 | 120 | - | 0.9998 |
0.2559 | 140 | - | 0.9998 |
0.2925 | 160 | - | 0.9998 |
0.3291 | 180 | - | 0.9998 |
0.3656 | 200 | - | 0.9999 |
0.4022 | 220 | - | 0.9998 |
0.4388 | 240 | - | 0.9999 |
0.4753 | 260 | - | 1.0000 |
0.5119 | 280 | - | 1.0000 |
0.5484 | 300 | - | 1.0000 |
0.5850 | 320 | - | 1.0000 |
0.6216 | 340 | - | 1.0000 |
0.6581 | 360 | - | 1.0000 |
0.6947 | 380 | - | 1.0 |
0.7313 | 400 | - | 1.0000 |
0.7678 | 420 | - | 1.0 |
0.8044 | 440 | - | 1.0 |
0.8410 | 460 | - | 1.0000 |
0.8775 | 480 | - | 1.0 |
0.9141 | 500 | 0.0199 | 1.0000 |
0.9506 | 520 | - | 1.0 |
0.9872 | 540 | - | 1.0000 |
1.0 | 547 | - | 1.0000 |
1.0238 | 560 | - | 1.0000 |
1.0603 | 580 | - | 1.0000 |
1.0969 | 600 | - | 1.0000 |
1.1335 | 620 | - | 1.0000 |
1.1700 | 640 | - | 1.0 |
1.2066 | 660 | - | 1.0000 |
1.2431 | 680 | - | 1.0000 |
1.2797 | 700 | - | 1.0000 |
1.3163 | 720 | - | 1.0000 |
1.3528 | 740 | - | 1.0000 |
1.3894 | 760 | - | 1.0 |
1.4260 | 780 | - | 1.0 |
1.4625 | 800 | - | 1.0000 |
1.4991 | 820 | - | 1.0 |
1.5356 | 840 | - | 1.0000 |
1.5722 | 860 | - | 1.0000 |
1.6088 | 880 | - | 1.0 |
1.6453 | 900 | - | 1.0 |
1.6819 | 920 | - | 1.0 |
1.7185 | 940 | - | 1.0000 |
1.7550 | 960 | - | 1.0000 |
1.7916 | 980 | - | 1.0000 |
1.8282 | 1000 | 0.0012 | 1.0000 |
1.8647 | 1020 | - | 1.0 |
1.9013 | 1040 | - | 1.0 |
1.9378 | 1060 | - | 1.0 |
1.9744 | 1080 | - | 1.0 |
2.0 | 1094 | - | 1.0 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 159
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for GaniduA/bge-finetuned-olscience
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy on evalself-reported1.000
- Cosine Accuracy Threshold on evalself-reported0.057
- Cosine F1 on evalself-reported1.000
- Cosine F1 Threshold on evalself-reported0.057
- Cosine Precision on evalself-reported1.000
- Cosine Recall on evalself-reported1.000
- Cosine Ap on evalself-reported1.000
- Cosine Mcc on evalself-reported1.000