ThiloteE's picture
Update README.md
5dad14c verified
|
raw
history blame
8.46 kB
---
base_model: 01-ai/Yi-1.5-9B-Chat-16K
pipeline_tag: text-generation
inference: false
model_creator: 01-AI
model_name: Yi-1.5-9B-Chat-16K
model_type: llama
language:
- en
- zh
library_name: transformers
license: apache-2.0
quantized_by: ThiloteE
tags:
- text-generation-inference
- transformers
- GGUF
- GPT4All
---
# About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
- Static quants of https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [c3776ca](https://github.com/ggerganov/llama.cpp/commit/c3776cacabce2ee35f172fb72be7a519752125fa)
# Notes
These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all).
The config.json, generation_config.json and tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants.
# Prompt Template (for GPT4All)
System Prompt:
```
<|im_start|>system
Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>
```
Chat Template:
```
<|im_start|>user
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>
```
Do not miss the newlines at the end!
# Context Length
`16384`
# Provided Quants
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.Q4_K_M.gguf) | Q4_0 | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.f16.gguf) | f16 | 17.2 | 16 bpw, overkill |
# About GGUF
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
Here is a handy graph by ikawrakow comparing some quant types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
# Thanks
I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. I thank 3Simplex for everything.
Shoutout to the GPT4All and llama.cpp communities :-)
------
<!-- footer end -->
<!-- original-model-card start -->
# Original Model card:
---
license: apache-2.0
---
<div align="center">
<picture>
<img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
</picture>
</div>
<p align="center">
<a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
<a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
<a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
<a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a>
<br/>
<a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
<a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
</p>
# Intro
Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples.
Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension.
<div align="center">
Model | Context Length | Pre-trained Tokens
| :------------: | :------------: | :------------: |
| Yi-1.5 | 4K, 16K, 32K | 3.6T
</div>
# Models
- Chat models
<div align="center">
| Name | Download |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Yi-1.5-34B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI)|
| Yi-1.5-34B-Chat-16K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B-Chat-16K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-6B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
</div>
- Base models
<div align="center">
| Name | Download |
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Yi-1.5-34B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-34B-32K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-9B-32K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
| Yi-1.5-6B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
</div>
# Benchmarks
- Chat models
Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png)
Yi-1.5-9B-Chat is the top performer among similarly sized open-source models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png)
- Base models
Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png)
Yi-1.5-9B is the top performer among similarly sized open-source models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png)
# Quick Start
For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5).
<!-- original-model-card end -->
<!-- end -->