lora
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the flock_task4_tranning dataset. It achieves the following results on the evaluation set:
- Loss: 1.1633
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0954 | 0.0501 | 50 | 1.2925 |
1.0622 | 0.1002 | 100 | 1.2432 |
0.9452 | 0.1502 | 150 | 1.2492 |
1.0231 | 0.2003 | 200 | 1.2214 |
1.0069 | 0.2504 | 250 | 1.2120 |
0.9887 | 0.3005 | 300 | 1.1978 |
0.8736 | 0.3505 | 350 | 1.1946 |
0.9229 | 0.4006 | 400 | 1.1957 |
0.9746 | 0.4507 | 450 | 1.1893 |
0.9217 | 0.5008 | 500 | 1.1827 |
0.9055 | 0.5508 | 550 | 1.1768 |
0.9332 | 0.6009 | 600 | 1.1708 |
0.8994 | 0.6510 | 650 | 1.1739 |
0.9139 | 0.7011 | 700 | 1.1631 |
0.9447 | 0.7511 | 750 | 1.1687 |
0.9196 | 0.8012 | 800 | 1.1653 |
0.8767 | 0.8513 | 850 | 1.1638 |
0.8826 | 0.9014 | 900 | 1.1622 |
0.9803 | 0.9514 | 950 | 1.1631 |
Framework versions
- PEFT 0.12.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Flock2Moooooo/task-4-microsoft-Phi-3-mini-4k-instruct
Base model
microsoft/Phi-3-mini-4k-instruct