lora

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the flock_task4_tranning dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1633

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.0954 0.0501 50 1.2925
1.0622 0.1002 100 1.2432
0.9452 0.1502 150 1.2492
1.0231 0.2003 200 1.2214
1.0069 0.2504 250 1.2120
0.9887 0.3005 300 1.1978
0.8736 0.3505 350 1.1946
0.9229 0.4006 400 1.1957
0.9746 0.4507 450 1.1893
0.9217 0.5008 500 1.1827
0.9055 0.5508 550 1.1768
0.9332 0.6009 600 1.1708
0.8994 0.6510 650 1.1739
0.9139 0.7011 700 1.1631
0.9447 0.7511 750 1.1687
0.9196 0.8012 800 1.1653
0.8767 0.8513 850 1.1638
0.8826 0.9014 900 1.1622
0.9803 0.9514 950 1.1631

Framework versions

  • PEFT 0.12.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Flock2Moooooo/task-4-microsoft-Phi-3-mini-4k-instruct

Adapter
(751)
this model