Text Generation
GGUF
English

GGUF Files for Blake-XTM-Arc-T0

These are the GGUF files for Flexan/Blake-XTM-Arc-T0.

GGUF Link Quantization Description
Download Q2_K Lowest quality
Download IQ3_XS Integer quant
Download Q3_K_S
Download IQ3_S Integer quant, preferable over Q3_K_S
Download IQ3_M Integer quant
Download Q3_K_M
Download Q3_K_L
Download IQ4_XS Integer quant
Download Q4_K_S Fast with good performance
Download Q4_K_M Recommended: Perfect mix of speed and performance
Download Q5_K_S
Download Q5_K_M
Download Q6_K Very good quality
Download Q8_0 Best quality
Download f16 Full precision, don't bother; use a quant

Model Card for Blake-XTM Arc T0

Blake-XTM Arc T0 is a 7B large language model used for text generation. It was trained as a (tool-calling) assistant. This model is a variation of Blake-XTM-Arc without reasoning.

Model Details

Model Description

Blake-XTM Arc T0 is a 7B parameter instruct LLM trained to assist and optionally call a tool. It only supports using one tool per assistant message (no parallel tool calling). The model was LoRA fine-tuned with CatNyanster-7B as base model, which was fine-tuned on Mistral-7B.

Chat Format

Blake-XTM Arc T0 uses the ChatML format, e.g.:

<|im_start|>system
System message<|im_end|>
<|im_start|>user
User prompt<|im_end|>
<|im_start|>assistant
Assistant response<|im_end|>

Model Usage

The assistant response can have the following two formats (the contents are examples and were not generated from the model):

  1. Response:
    <|im_start|>assistant
    Hello! How may I assist you today?<|im_end|>
    
  2. Tool call:
    <|im_start|>assistant
    <|tool_start|>{'name': 'find_restaurants', 'arguments': {'city': 'Paris', 'country': 'France'}}<|tool_end|><|im_end|>
    

We recommend using the following system prompts for your situation:

  • Only thought process:
    You are an advanced AI model.
    
  • Thought process and tool calling:
    You are an advanced AI model with tool-calling capabilities.
    
    If the user asks something and it requires a tool then you should call the tool with the arguments.
    
    # Tools
    You have access to the following tools:
    [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert currency from one type to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to be converted'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'get_random_joke', 'description': 'Get a random joke', 'parameters': {'type': 'object', 'properties': {}, 'required': []}}}]
    
    To call a tool, write a JSON object with the name and arguments inside <|tool_start|>...<|tool_end|>.
    

For responding with a tool response, you can send a message as the tool user:

<|im_start|>assistant
<|tool_start|>{'name': 'find_restaurants', 'arguments': {'city': 'Paris', 'country': 'France'}}<|tool_end|><|im_end|>
<|im_start|>tool
{'restaurants': [{'name': 'A Restaurant Name', 'rating': 4.5}]}<|im_end|>
Downloads last month
344
GGUF
Model size
7.24B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Flexan/Blake-XTM-Arc-T0-GGUF

Quantized
(1)
this model

Datasets used to train Flexan/Blake-XTM-Arc-T0-GGUF

Collection including Flexan/Blake-XTM-Arc-T0-GGUF