|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
from typing import Optional, Tuple |
|
|
|
|
|
try: |
|
from .configuration_snowflake_core import SnowflakeCoreConfig |
|
except ImportError: |
|
SnowflakeCoreConfig = PretrainedConfig |
|
|
|
class FusedSelfAttention(nn.Module): |
|
def __init__(self, embed_dim, num_heads): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
assert ( |
|
self.head_dim * num_heads == embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.qkv_proj = nn.Linear(embed_dim, 3 * embed_dim) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim) |
|
|
|
def forward(self, x, attn_mask=None, key_padding_mask=None): |
|
B, T, C = x.size() |
|
qkv = self.qkv_proj(x) |
|
qkv = qkv.reshape(B, T, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn_scores = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5) |
|
if attn_mask is not None: |
|
attn_scores = attn_scores + attn_mask.unsqueeze(0).unsqueeze(0).to(attn_scores.dtype) |
|
if key_padding_mask is not None: |
|
attn_scores = attn_scores.masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf')) |
|
attn_probs = F.softmax(attn_scores, dim=-1) |
|
attn_output = attn_probs @ v |
|
attn_output = attn_output.transpose(1, 2).reshape(B, T, C) |
|
return self.out_proj(attn_output) |
|
|
|
class GPTBlock(nn.Module): |
|
def __init__(self, embed_dim, num_heads, dropout=0.1): |
|
super().__init__() |
|
self.ln1 = nn.LayerNorm(embed_dim) |
|
self.attn = FusedSelfAttention(embed_dim, num_heads) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.ln2 = nn.LayerNorm(embed_dim) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(embed_dim, 4 * embed_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(4 * embed_dim, embed_dim), |
|
) |
|
self.dropout2 = nn.Dropout(dropout) |
|
def forward(self, x, attn_mask=None, key_padding_mask=None): |
|
h = self.ln1(x) |
|
attn_output = self.attn(h, attn_mask=attn_mask, key_padding_mask=key_padding_mask) |
|
x = x + self.dropout1(attn_output) |
|
x = x + self.dropout2(self.mlp(self.ln2(x))) |
|
return x |
|
|
|
class SnowflakeCoreG1(PreTrainedModel): |
|
config_class = SnowflakeCoreConfig |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.vocab_size = config.vocab_size |
|
self.embed_dim = config.embed_dim |
|
self.num_heads = config.num_heads |
|
self.num_layers = config.num_layers |
|
self.max_length = config.max_length |
|
self.ffn_dim = getattr(config, 'ffn_dim', 4 * config.embed_dim) |
|
self.dropout = getattr(config, 'dropout', 0.1) |
|
|
|
self.embed = nn.Embedding(self.vocab_size, self.embed_dim) |
|
self.pos_embed = nn.Embedding(self.max_length, self.embed_dim) |
|
self.dropout_layer = nn.Dropout(self.dropout) |
|
self.blocks = nn.ModuleList([ |
|
GPTBlock(self.embed_dim, self.num_heads, self.dropout) for _ in range(self.num_layers) |
|
]) |
|
self.ln_f = nn.LayerNorm(self.embed_dim) |
|
self.lm_head = nn.Linear(self.embed_dim, self.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
**kwargs |
|
) -> Tuple: |
|
B, T = input_ids.size() |
|
pos = torch.arange(0, T, device=input_ids.device).unsqueeze(0) |
|
x = self.embed(input_ids) + self.pos_embed(pos) |
|
x = self.dropout_layer(x) |
|
causal_mask = torch.triu(torch.ones(T, T, device=input_ids.device), diagonal=1).bool() |
|
causal_mask = causal_mask.masked_fill(causal_mask, float('-inf')) |
|
key_padding_mask = None |
|
if attention_mask is not None: |
|
key_padding_mask = attention_mask == 0 |
|
for block in self.blocks: |
|
x = block(x, attn_mask=causal_mask, key_padding_mask=key_padding_mask) |
|
x = self.ln_f(x) |
|
logits = self.lm_head(x) |
|
|
|
loss = None |
|
if labels is not None: |
|
shift_logits = logits[:, :-1, :].contiguous().view(-1, self.vocab_size) |
|
shift_labels = labels[:, 1:].contiguous().view(-1) |
|
loss = F.cross_entropy(shift_logits, shift_labels, ignore_index=self.config.pad_token_id) |
|
if loss is not None: |
|
return {"loss": loss, "logits": logits} |
|
return {"logits": logits} |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, config=None, **kwargs): |
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) |