FlameF0X commited on
Commit
ce186be
·
verified ·
1 Parent(s): e93cc67

Create modeling_snowflake_core.py

Browse files
Files changed (1) hide show
  1. modeling_snowflake_core.py +130 -0
modeling_snowflake_core.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from transformers import PreTrainedModel, PretrainedConfig
5
+ from typing import Optional, Tuple
6
+
7
+ # Optional: import custom config if present
8
+ try:
9
+ from .configuration_snowflake_core import SnowflakeCoreConfig
10
+ except ImportError:
11
+ SnowflakeCoreConfig = PretrainedConfig
12
+
13
+ class FusedSelfAttention(nn.Module):
14
+ def __init__(self, embed_dim, num_heads):
15
+ super().__init__()
16
+ self.num_heads = num_heads
17
+ self.head_dim = embed_dim // num_heads
18
+ assert (
19
+ self.head_dim * num_heads == embed_dim
20
+ ), "embed_dim must be divisible by num_heads"
21
+ self.qkv_proj = nn.Linear(embed_dim, 3 * embed_dim)
22
+ self.out_proj = nn.Linear(embed_dim, embed_dim)
23
+
24
+ def forward(self, x, attn_mask=None, key_padding_mask=None):
25
+ B, T, C = x.size()
26
+ qkv = self.qkv_proj(x) # [B, T, 3 * C]
27
+ qkv = qkv.reshape(B, T, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
28
+ q, k, v = qkv[0], qkv[1], qkv[2] # Each: [B, num_heads, T, head_dim]
29
+
30
+ attn_scores = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5) # [B, num_heads, T, T]
31
+ if attn_mask is not None:
32
+ attn_scores = attn_scores + attn_mask.unsqueeze(0).unsqueeze(0).to(attn_scores.dtype)
33
+ if key_padding_mask is not None:
34
+ attn_scores = attn_scores.masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'))
35
+ attn_probs = F.softmax(attn_scores, dim=-1)
36
+ attn_output = attn_probs @ v # [B, num_heads, T, head_dim]
37
+ attn_output = attn_output.transpose(1, 2).reshape(B, T, C)
38
+ return self.out_proj(attn_output)
39
+
40
+ class GPTBlock(nn.Module):
41
+ def __init__(self, embed_dim, num_heads, dropout=0.1):
42
+ super().__init__()
43
+ self.ln1 = nn.LayerNorm(embed_dim)
44
+ self.attn = FusedSelfAttention(embed_dim, num_heads)
45
+ self.dropout1 = nn.Dropout(dropout)
46
+ self.ln2 = nn.LayerNorm(embed_dim)
47
+ self.mlp = nn.Sequential(
48
+ nn.Linear(embed_dim, 4 * embed_dim),
49
+ nn.GELU(),
50
+ nn.Dropout(dropout),
51
+ nn.Linear(4 * embed_dim, embed_dim),
52
+ )
53
+ self.dropout2 = nn.Dropout(dropout)
54
+ def forward(self, x, attn_mask=None, key_padding_mask=None):
55
+ h = self.ln1(x)
56
+ attn_output = self.attn(h, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
57
+ x = x + self.dropout1(attn_output)
58
+ x = x + self.dropout2(self.mlp(self.ln2(x)))
59
+ return x
60
+
61
+ class SnowflakeCoreG1(PreTrainedModel):
62
+ config_class = SnowflakeCoreConfig
63
+ supports_gradient_checkpointing = True
64
+
65
+ def __init__(self, config):
66
+ super().__init__(config)
67
+ self.vocab_size = config.vocab_size
68
+ self.embed_dim = config.embed_dim
69
+ self.num_heads = config.num_heads
70
+ self.num_layers = config.num_layers
71
+ self.max_length = config.max_length
72
+ self.ffn_dim = getattr(config, 'ffn_dim', 4 * config.embed_dim)
73
+ self.dropout = getattr(config, 'dropout', 0.1)
74
+
75
+ self.embed = nn.Embedding(self.vocab_size, self.embed_dim)
76
+ self.pos_embed = nn.Embedding(self.max_length, self.embed_dim)
77
+ self.dropout_layer = nn.Dropout(self.dropout)
78
+ self.blocks = nn.ModuleList([
79
+ GPTBlock(self.embed_dim, self.num_heads, self.dropout) for _ in range(self.num_layers)
80
+ ])
81
+ self.ln_f = nn.LayerNorm(self.embed_dim)
82
+ self.lm_head = nn.Linear(self.embed_dim, self.vocab_size, bias=False)
83
+
84
+ self.post_init()
85
+
86
+ def get_input_embeddings(self):
87
+ return self.embed
88
+
89
+ def set_input_embeddings(self, value):
90
+ self.embed = value
91
+
92
+ def get_output_embeddings(self):
93
+ return self.lm_head
94
+
95
+ def set_output_embeddings(self, new_embeddings):
96
+ self.lm_head = new_embeddings
97
+
98
+ def forward(
99
+ self,
100
+ input_ids: torch.LongTensor = None,
101
+ attention_mask: Optional[torch.Tensor] = None,
102
+ labels: Optional[torch.LongTensor] = None,
103
+ **kwargs
104
+ ) -> Tuple:
105
+ B, T = input_ids.size()
106
+ pos = torch.arange(0, T, device=input_ids.device).unsqueeze(0)
107
+ x = self.embed(input_ids) + self.pos_embed(pos)
108
+ x = self.dropout_layer(x)
109
+ causal_mask = torch.triu(torch.ones(T, T, device=input_ids.device), diagonal=1).bool()
110
+ causal_mask = causal_mask.masked_fill(causal_mask, float('-inf'))
111
+ key_padding_mask = None
112
+ if attention_mask is not None:
113
+ key_padding_mask = attention_mask == 0
114
+ for block in self.blocks:
115
+ x = block(x, attn_mask=causal_mask, key_padding_mask=key_padding_mask)
116
+ x = self.ln_f(x)
117
+ logits = self.lm_head(x)
118
+
119
+ loss = None
120
+ if labels is not None:
121
+ shift_logits = logits[:, :-1, :].contiguous().view(-1, self.vocab_size)
122
+ shift_labels = labels[:, 1:].contiguous().view(-1)
123
+ loss = F.cross_entropy(shift_logits, shift_labels, ignore_index=self.config.pad_token_id)
124
+ if loss is not None:
125
+ return {"loss": loss, "logits": logits}
126
+ return {"logits": logits}
127
+
128
+ @classmethod
129
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, config=None, **kwargs):
130
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)