File size: 11,826 Bytes
f9dd776 dc3aac2 f9dd776 0e25787 196fae2 7f22e01 6f116dc b4d2118 d26d1fb b4d2118 d26d1fb b4d2118 d26d1fb b44321f f9dd776 d6a8424 30bde8f d6a8424 28489be d6a8424 5d01eec d6a8424 28489be d6a8424 28489be d6a8424 28489be 5d01eec 28489be d6a8424 28489be d6a8424 28489be d6a8424 28489be 0b9ea72 d6a8424 28489be d6a8424 28489be d6a8424 28489be d6a8424 28489be d6a8424 28489be d6a8424 28489be d6a8424 b88dd95 28489be 30bde8f 28489be 30bde8f 28489be 30bde8f 28489be 30bde8f 28489be 30bde8f 28489be 30bde8f 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be d6a8424 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 28489be 341d41e 3a223a9 5190532 2f7a15b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
---
license: apache-2.0
datasets:
- FlameF0X/Mixture-of-Thoughts-2048T
language:
- en
library_name: transformers
tags:
- pre-train
- custom_code
- SnowflakeCore
model-index:
- name: FlameF0X/SnowflakeCore-G1-Tiny
results:
- task:
type: generation_speed
name: Generation Speed
metrics:
- type: avg_tokens_per_second
value: 57.257723907839626
- task:
type: model_size
name: Model Size
metrics:
- type: model_size_mb
value: 1357.54296875
- task:
type: gsm8k_accuracy
name: GSM8K Accuracy
metrics:
- type: accuracy
value: 0.2
- task:
type: mmlu_accuracy
name: MMLU Accuracy
metrics:
- type: accuracy
value: 0
- task:
type: humaneval_pass@1
name: HumanEval Pass@1
metrics:
- type: pass@1
value: 0
- task:
type: peak_memory_gb
name: Peak Memory (seq_128)
metrics:
- type: seq_128
value: 5.9882988929748535
- task:
type: peak_memory_gb
name: Peak Memory (seq_512)
metrics:
- type: seq_512
value: 6.0380940437316895
- task:
type: peak_memory_gb
name: Peak Memory (seq_1024)
metrics:
- type: seq_1024
value: 6.123685836791992
- task:
type: peak_memory_gb
name: Peak Memory (seq_2048)
metrics:
- type: seq_2048
value: 6.354169845581055
pipeline_tag: text-generation
new_version: FlameF0X/SnowflakeCore-G1-Tiny2
---
# SnowflakeCore-G1-Tiny
A custom GPT-style transformer language model built from scratch using PyTorch, trained on the Mixture-of-Thoughts dataset for enhanced reasoning capabilities.
## Model Overview
SnowflakeCore-G1-Tiny is a GPT-style autoregressive transformer model with **~400M parameters** designed for text generation tasks.
### Key Features
- **2048 token context window** for extended conversations
- **Mixed precision training** (BF16/FP16) for efficiency
- **Custom attention implementation** with fused operations
- **Early stopping mechanisms** for optimal training
- **Gradient accumulation** for effective large batch training
### Architecture Specifications
| Component | Value |
|-----------|-------|
| Model Type | Autoregressive Transformer |
| Parameters | ~400M |
| Layers | 24 |
| Hidden Size | 1024 |
| Attention Heads | 16 |
| Head Dimension | 64 |
| FFN Dimension | 4096 |
| Context Length | 2048 tokens |
| Vocabulary Size | 50,257 (GPT-2 tokenizer) |
## Quick Start
### Installation
```bash
pip install torch transformers # if not already installed
```
### Basic Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"FlameF0X/SnowflakeCore-G1-Tiny",
trust_remote_code=True,
force_download=True,
use_safetensors=True,
)
tokenizer = AutoTokenizer.from_pretrained(
"FlameF0X/SnowflakeCore-G1-Tiny",
trust_remote_code=True,
force_download=True,
use_safetensors=True,
)
def custom_greedy_generate(prompt, max_length=50):
model.eval()
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated = input_ids
with torch.no_grad():
for _ in range(max_length):
outputs = model(input_ids=generated)
next_token_logits = outputs["logits"][:, -1, :]
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
generated = torch.cat((generated, next_token_id), dim=1)
if next_token_id.item() == tokenizer.eos_token_id:
break
return tokenizer.decode(generated[0], skip_special_tokens=True)
# Generate text
prompt = "Once upon a time"
result = custom_greedy_generate(prompt)
print(result)
```
### Fine-Tuning
```python
import os
import argparse
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
Trainer,
TrainingArguments,
)
from datasets import load_dataset
import torch
# === Disable W&B logging ===
os.environ["WANDB_DISABLED"] = "true"
# === Config ===
config = {
"model_name": "FlameF0X/SnowflakeCore-G1-Tiny",
"output_dir": "./snowflake-chatbot",
"context_window": 512,
"per_device_batch_size": 1,
"gradient_accumulation_steps": 16,
"max_steps": 500,
"dataloader_workers": 4,
"dataset_name": "tatsu-lab/alpaca",
"dataset_split": "train[:10000]",
}
# === Derived ===
config["effective_batch_size"] = (
config["per_device_batch_size"] * config["gradient_accumulation_steps"]
)
print(f"Effective batch size: {config['effective_batch_size']}")
print(f"Context window: {config['context_window']}")
# === 1. Load tokenizer and model ===
def load_model_and_tokenizer(config):
print(f"Loading model and tokenizer from {config['model_name']}...")
tokenizer = AutoTokenizer.from_pretrained(
config["model_name"],
trust_remote_code=True,
force_download=True,
use_safetensors=True,
model_max_length=config["context_window"],
)
model = AutoModelForCausalLM.from_pretrained(
config["model_name"],
trust_remote_code=True,
force_download=True,
use_safetensors=True,
)
if hasattr(torch, "compile"):
try:
print("Compiling model with torch.compile...")
model = torch.compile(model)
except Exception as e:
print(f"Compilation failed: {e}")
return tokenizer, model
# === 2. Load dataset ===
def load_custom_dataset(name, split):
print(f"Loading dataset: {name} ({split})...")
return load_dataset(name, split=split)
# === 3. Format dataset ===
def format_example(example):
"""Update this function to work with different datasets."""
return {
"text": f"### Instruction:\n{example['instruction']}\n### Input:\n{example['input']}\n### Response:\n{example['output']}"
}
# === 4. Tokenize ===
def tokenize_example(example, tokenizer, max_length):
tokens = tokenizer(
example["text"],
truncation=True,
padding="max_length",
max_length=max_length,
)
tokens["labels"] = tokens["input_ids"].copy()
return tokens
# === 5. Train ===
def train_model(model, tokenizer, tokenized_dataset, config):
print("Preparing training arguments...")
training_args = TrainingArguments(
output_dir=config["output_dir"],
per_device_train_batch_size=config["per_device_batch_size"],
gradient_accumulation_steps=config["gradient_accumulation_steps"],
max_steps=config["max_steps"],
logging_dir="./logs",
logging_steps=20,
save_strategy="no",
fp16=torch.cuda.is_available() and not torch.cuda.is_bf16_supported(),
bf16=torch.cuda.is_available() and torch.cuda.is_bf16_supported(),
overwrite_output_dir=True,
report_to=[],
dataloader_num_workers=config["dataloader_workers"],
optim="adamw_torch_fused" if torch.cuda.is_available() and hasattr(torch, 'compile') else "adamw_torch",
remove_unused_columns=False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
print("Starting training...")
trainer.train()
print("Training completed.")
# === 6. Save ===
def save_model(model, tokenizer, output_dir):
print(f"Saving model to {output_dir}...")
model.save_pretrained(output_dir, safe_serialization=False)
tokenizer.save_pretrained(output_dir)
print("Model saved.")
# === Main ===
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default=config["dataset_name"])
parser.add_argument("--split", type=str, default=config["dataset_split"])
args = parser.parse_args()
tokenizer, model = load_model_and_tokenizer(config)
dataset = load_custom_dataset(args.dataset, args.split)
print("Formatting dataset...")
dataset = dataset.map(format_example, num_proc=config["dataloader_workers"], load_from_cache_file=False)
print("Tokenizing dataset...")
tokenized = dataset.map(
lambda x: tokenize_example(x, tokenizer, config["context_window"]),
batched=True,
num_proc=config["dataloader_workers"],
load_from_cache_file=False,
)
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
train_model(model, tokenizer, tokenized, config)
save_model(model, tokenizer, config["output_dir"])
if __name__ == "__main__":
main()
```
## Training Details
### Dataset
- **Source**: [FlameF0X/Mixture-of-Thoughts-2048T](https://huggingface.co/datasets/FlameF0X/Mixture-of-Thoughts-2048T)
- **Purpose**: Enhanced reasoning capabilities through mixture-of-thoughts training
### Training Configuration
- **Framework**: PyTorch with mixed precision (BF16/FP16)
- **Optimizer**: AdamW (learning rate: 2e-4)
- **Batch Size**: 1 with gradient accumulation (32 steps)
- **Context Window**: 2048 tokens
- **Validation Split**: 10%
- **Early Stopping**: Implemented at epoch and step levels
### Performance Monitoring
- Training loss tracked per epoch with perplexity calculation
- Full validation after each epoch
- Step-level monitoring every 500 steps
- Comprehensive metrics saved in `training_metrics.json`
## Technical Implementation
### Attention Mechanism
- **Causal Masking**: Supports autoregressive generation
- **Key Padding Mask**: Enables batched inference
- **Scaled Dot-Product**: Head dimension normalization included
### Memory Optimization
- **Fused Operations**: Reduces memory fragmentation
- **Mixed Precision**: 30-40% memory reduction
- **Gradient Accumulation**: Simulates larger batch sizes
- **Optional Quantization**: Further model compression
### Training Stability
- **Gradient Clipping**: Prevents exploding gradients
- **Automatic Loss Scaling**: Mixed precision stability
- **Early Stopping**: Prevents overfitting with patience mechanisms
## System Requirements
### Memory Requirements
- **Training**: 16-24GB VRAM (precision dependent)
- **Inference**: 4-6GB VRAM for standard generation
- **Context**: Maximum 2048 tokens input length
### Generation Parameters
Default configuration:
```json
{
"do_sample": true,
"temperature": 1.0,
"top_p": 0.9,
"top_k": 50,
"max_new_tokens": 50,
"pad_token_id": 50256,
"eos_token_id": 50256
}
```
## Model Files
The repository contains:
- `pytorch_model.bin` - PyTorch model weights
- `model.safetensors` - SafeTensors format weights
- `config.json` - Model configuration
- `generation_config.json` - Generation parameters
- `training_metrics.json` - Training statistics
- `tokenizer.json` - Tokenizer configuration
- `vocab.json` & `merges.txt` - Vocabulary files
## Limitations
- **No HuggingFace `.generate()` support**: Use custom generation function
- **Output Quality**: May produce repetitive or nonsensical text for some prompts
- **Hardware Requirements**: GPU recommended for practical inference
- **Context Window**: Limited to 2048 tokens
- **Dataset Dependency**: Performance tied to Mixture-of-Thoughts dataset quality
## Example Output
```
Input: Hello, I am Alex and
Output: Hello, I am Alex andbourg Chip Chip Chip Chip Chip Chip Chip ChipCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCos
```
*Note: The repetitive output shown is typical for small or early-stage models and can be improved with further training or fine-tuning.*
## Support Me
You can support me via [Ko-fi](https://ko-fi.com/flamef0x) or you can try my [Vast.ai](https://cloud.vast.ai/?ref_id=222345&creator_id=222345&name=Efficient%20Pretraining%20GPU%20Template) template!
### Small meta-data
- Release date: June 29, 2025. |