Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,7 @@ datasets:
|
|
7 |
language:
|
8 |
- en
|
9 |
library_name: transformers
|
|
|
10 |
---
|
11 |
|
12 |
# Snowflake-G1-Tiny
|
@@ -178,6 +179,77 @@ None. Yet
|
|
178 |
- Trained on FlameF0X/Mixture-of-Thoughts-2048T dataset
|
179 |
- Inspired by GPT architecture with custom optimizations
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
---
|
182 |
|
183 |
*Model trained with PyTorch and mixed precision for optimal performance. For technical support or questions, please open an issue in the repository.*
|
|
|
7 |
language:
|
8 |
- en
|
9 |
library_name: transformers
|
10 |
+
pipeline_tag: text-generation
|
11 |
---
|
12 |
|
13 |
# Snowflake-G1-Tiny
|
|
|
179 |
- Trained on FlameF0X/Mixture-of-Thoughts-2048T dataset
|
180 |
- Inspired by GPT architecture with custom optimizations
|
181 |
|
182 |
+
## Loading and Using the Model
|
183 |
+
|
184 |
+
You can load the SnowflakeCore-G1-Tiny model and generate text using the provided script or directly in your Python code.
|
185 |
+
|
186 |
+
### Using the Provided Script
|
187 |
+
|
188 |
+
Run the following command from the project root:
|
189 |
+
|
190 |
+
```bash
|
191 |
+
python GPT/generate_text.py
|
192 |
+
```
|
193 |
+
|
194 |
+
You will be prompted to enter a prompt, and the model will generate text in response.
|
195 |
+
|
196 |
+
### Loading the Model in Python
|
197 |
+
|
198 |
+
You can also load the model and tokenizer in your own Python scripts as follows:
|
199 |
+
|
200 |
+
```python
|
201 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
202 |
+
import torch
|
203 |
+
|
204 |
+
# Load model and tokenizer
|
205 |
+
model = AutoModelForCausalLM.from_pretrained(
|
206 |
+
"FlameF0X/SnowflakeCore-G1-Tiny",
|
207 |
+
trust_remote_code=True,
|
208 |
+
force_download=True,
|
209 |
+
use_safetensors=True,
|
210 |
+
)
|
211 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
212 |
+
"FlameF0X/SnowflakeCore-G1-Tiny",
|
213 |
+
trust_remote_code=True,
|
214 |
+
force_download=True,
|
215 |
+
use_safetensors=True,
|
216 |
+
)
|
217 |
+
|
218 |
+
def custom_greedy_generate(prompt, max_length=50):
|
219 |
+
model.eval()
|
220 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
221 |
+
generated = input_ids
|
222 |
+
with torch.no_grad():
|
223 |
+
for _ in range(max_length):
|
224 |
+
outputs = model(input_ids=generated)
|
225 |
+
next_token_logits = outputs["logits"][:, -1, :]
|
226 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
|
227 |
+
generated = torch.cat((generated, next_token_id), dim=1)
|
228 |
+
if next_token_id.item() == tokenizer.eos_token_id:
|
229 |
+
break
|
230 |
+
return tokenizer.decode(generated[0], skip_special_tokens=True)
|
231 |
+
|
232 |
+
# Example usage
|
233 |
+
prompt = "Once upon a time"
|
234 |
+
print(custom_greedy_generate(prompt))
|
235 |
+
```
|
236 |
+
|
237 |
+
## Demo
|
238 |
+
|
239 |
+
Example usage with the provided script:
|
240 |
+
|
241 |
+
```
|
242 |
+
Enter a prompt: Hello, I am Alex and
|
243 |
+
|
244 |
+
Generated text: Hello, I am Alex andbourg Chip Chip Chip Chip Chip Chip Chip ChipCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCosCos
|
245 |
+
```
|
246 |
+
|
247 |
+
**Explanation:**
|
248 |
+
- When you run the script, you will be prompted to enter a text prompt (e.g., `Hello, I am Alex and`).
|
249 |
+
- The model will then generate a continuation of your prompt, printing the result under "Generated text:".
|
250 |
+
- The output shown above is a sample from the model. The actual output may vary depending on the model's training, prompt, and generation settings.
|
251 |
+
- This demo demonstrates how the model can extend a given prompt with its learned language patterns. The repetitive or unusual output is typical for small or early-stage models and can be improved with further training or tuning.
|
252 |
+
|
253 |
---
|
254 |
|
255 |
*Model trained with PyTorch and mixed precision for optimal performance. For technical support or questions, please open an issue in the repository.*
|